Nutrient Types & Nutrient Compounds

By the end of this chapter, I should be able to;

- a) understand the term Nutrition
- b) identify the food nutrients, their sources and importance to humans
- c) perform food tests for various nutrients
- d) appreciate the importance of a diet containing the different nutrients
- e) appreciate the concept of balanced diet in relation to age, sex and an individual's activity
- f) appreciate the causes and effects of nutrient deficiency in humans, including diseases related to malnutrition
- g) calculate body mass index (BMI) and explain its implication
- h) identify the major plant mineral nutrients, their role and the symptoms of deficiencies

The meaning of Nutrition

ACTIVITY

- 1. In groups, brainstorm on the meaning of the term nutrition.
- 2. discuss the modes of nutrition of different organisms in your community.
- 3. present your findings to the rest of the class and make a conclusion on the meaning of the term Nutrition

(15 minutes)

Nutrition is the process by which an organism takes in and utilizes food substances.

These food substances are called **NUTRIENTS** and they vary according to the nature of the organism. For green plants, the nutrients are inorganic

Nutrients in the food we eat

- 1. Can you live without eating food?
- 2. How do you feel when you spend some hours without food?
- 3. What is the food you eat used for?

ctd

When you carryout **physical activities** e.g. playing football, netball or walking, energy is used. Even if you are doing **passive activities** like sitting, watching TV or sleeping, energy is still required to maintain a state of order in your body.

the energy for carrying out these activities comes from the food we eat

Energy balance in the human body

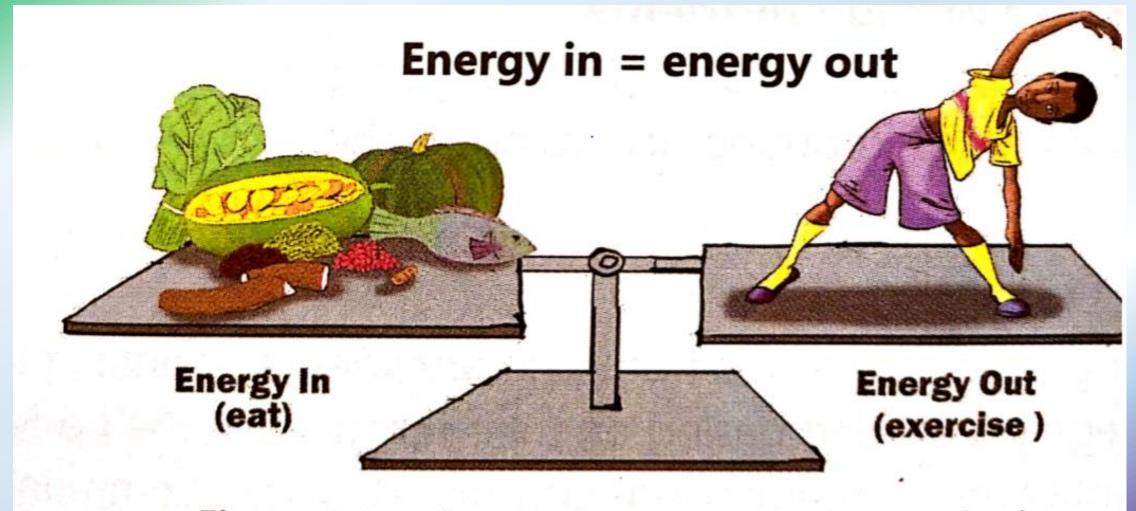


Figure 3.1: Balancing energy in the human body

ctd

You have seen children who are stunted and those with pot bellies.

QN: What do you think could have caused such conditions among those children?

Like all other living organisms, our bodies need nutrients to carryout metabolism and synthesize proteins and other substances needed for your body to grow and develop. The source of these nutrients is the food we eat.

Ctd

Nutrients are chemical substances that organisms need in order to live and grow.

QN: what are the different food nutrients required by our bodies?

On a daily basis, you eat foods containing such nutrients in different amounts. Basing on the quantity that your body needs, nutrients are categorized into two groups;

1) the ones which our bodies need in fairly large amounts i.e. MACRO-nutrients. These are needed for, energy supply and growth

QN: what are the examples of these nutrients?

2) the ones which our bodies require in small amounts are the MICROnutrients

QN: what are examples of these nutrients?

Types and importance of food nutrients

Most foods are mixtures of nutrients and many of them contain more of one nutrient than others. Foods are often grouped according to the nutrients that they contain in abundance

Carbohydrates

Carbohydrates are the body's main source of energy; up to 65% of our energy comes from carbohydrates

ACTIVITY

In groups, carefully study pictures in fig;3.2

- 1) Identify the food sources which are rich in carbohydrates
- 2) Which other food sources in your community are rich in carbohydrates?
- 3) What is the importance of carbohydrates in the body)
- Share your findings with the rest of the class

pictures in figure 5.2

What to do

irish poatoes

cheese

8/4/2bread

beef

milk

cassava

sweet potatoes

@PETER L OKION 778001502/ 758795415

Figure 3.2: Food sources

eggs

sorghum

ground nuts

bananas

maize

liver

sugar canes

soln

- 1) yams, Irish potatoes, cassava, sorghum, maize, sweet potatoes and sugar canes.
- 2) rice, simsim, wheat, bread

Functions of carbohydrates

- ✓ They provide **energy** in the body when oxidized during respiration.
- ✓ They function as **food reserves** for storage within organisms e.g. many plants store food as starch and animals as glycogen.
- ✓ They are important components of **body structures** e.g. cellulose is a component cell walls, chitin forms exoskeleton of arthropods.
- ✓ They are important for commercial values as they provide raw materials e.g. cellulose for making paper
- ✓ Used in the fermentation process to form alcohol
- ✓ Disaccharides like sucrose are used for preservation of food substances for a short period of time

Classification of carbohydrates

Carbohydrates are classified basing on the number of sugar units they contain. They are classified into 3 groups i.e.

- 1) Monosaccharides ("mono" meaning single/one, "saccharide" meaning sugar)
- 2) Disaccharides
- 3) polysaccharides

Monosaccharides and disaccharides

These are referred to as **simple sugars or simply carbohydrates** that our body can easily utilize. For this reason, people with **diabetes mellitus** should not eat too much of these carbohydrates.

QN: What are the examples of such foods? (give examples of mono and disaccharides)

Polysaccharides

These are also called **complex carbohydrates**. They need to be broken down into simple sugars in order to be used by our body.

They can be consumed by a diabetic patients without restriction.

QN: What are examples of such foods?

Exercise

Suggest why:

- a) monosaccharides and disaccharides are referred to as simple sugars
- b) poly saccharides are referred to as complex sugars.

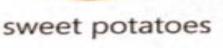
Proteins

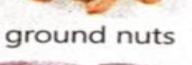
Do you enjoy drinking milk? Milk is one of the sources of proteins that you need to build body structures.

Animal products contain more proteins than plant products and are therefore usually better sources of body building foods.

ACTIVITY

In groups, carefully study the pictures in fig 3.3;


- 1) Identify the food sources which are rich in proteins
- 2) Which other foods in your community are rich in proteins?
- 3) What are the importance of proteins in the body?
- Share your findings with the rest of the class



bananas

fish

beans

8/4/2023

bread

cheese

Figure 3.3: Food sources

19

soln

- 1) beef, avocado, eggs, fish, milk, butter, cheese, chicken and beans
- 2) soya beans, animal flesh

Functions of proteins

- ✓ Body building which brings about **growth** i.e. from structures like in cell membrane, certain as in horns, fingernails, hooves etc.
- ✓ Repair and regenerate tissues that are damaged or worn out.
- ✓ Synthesis of functional molecules that control metabolism like enzymes and hormones.
- ✓ Provision of energy in times of *starvation*.
- ✓ Used in formation of pigments that transport respiratory gases e.g. *haemoglobin*

Lipids (fats and oils)

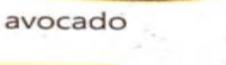
When beef or **offals** (internal organs of animals) are prepared at home and the soup is allowed to cool, white or **yellowish solids** form on the surface. These are **fats** and when heated, they melt to form a liquid called **oil**.

Fats and oils are the most common forms of lipids and they are a **concentrated source of energy**.

They are important nutrients for young children who need a lot of energy. Fats can also make meals more tasty and satisfying. Lipids are common in animal food sources.

NB:

Lipids contain more energy than an equivalent mass of carbohydrates. For example 1g of fat yields 39kj (kilojoules) of energy and set in 1g of carbohydrates yields 17kj of energy


Activity

In groups, carefully study the pictures in fig. 3.4

- 1) Identify the food sources which are rich in lipids
- 2) Which other food sources in your community are rich in lipids?
- 3) Why do you always include the foods you have identified in your diet?
- 4) Outline 4 differences between fats and oils
- Share your findings with the rest of the class

cheese

bread

beef

milk

cassava

sweet potatoes

eggs

cooking oil

Ghee

chicken

ground nuts

liver

sugar canes

soln

- 1) beef, avocado, eggs, fish, milk, butter, cheese and groundnuts
- 2) yoghurt, margarine, sunflower and simsim

Vitamins

Have you seen a child with bow shaped legs?

This symptom is caused by lack of vitamins in the child's diet. There are a range of vitamins that our bodies need to be healthy.

Assignment

In your groups, research the various vitamins known, source, functions and deficiencies and present in the table below

Present your findings to the class

Vitamin	Common Food source	Functions	Symptom of deficiency
A (Retinol)			
B1 (Thiamine)			
B2 (Riboflavin)			
B3 (Nicotinic acid/ Niacin)			
B12 (Cobamine)			
C (Ascorbic acid)			
D (calciferol)			
E (tocopherol)			
K (phylloquinone)			

Vitamin	Common Food source	Functions	Symptom of deficiency
A (Retinol)	Green vegetables, liver, butter, margarine, egg yolk and carrots	Growth in children Resistance to eye and respiratory tract diseases Good night (dim light) vision	Night blindness (poor dark adaptation) Frequent cold, sore eyes and unhealthy skin
B1 (Thiamine)	Yeast, beans, lean meat, egg yolk, bread and rice husks	Tissue respiration Keeps the heart, nerves and digestive organs healthy	Tiredness (fatigue) Retarded growth In children Poor appetite and pain in limbs
B2 (Riboflavin)	Yeast, milk, liver, cheese, leafy vegetables	Tissue respiration, growth and health of skin, keeps mucus membrane healthy	Retarded growth in children Cracks on lips, poor vision and skin disorders
B3 (Nicotinic acid/ Niacin)	Cereal grains, milk and its products, yeast and liver	Same as B2	Pellagra- disorders of Central Nervous System (CNS) like memory loss and depression
B12 (Cobamine)	Beef, kidney, liver, yeast	Forms Red Blood Cells	Anaemia – low blood count
C (Ascorbic acid) 8/4/2023	Fresh fruits and row vegetables	Development of teeth, bone and normal growth Repair of body tissues Proper function of the	Scurvy- sore gums, poor healing of sores in the gum
0/4/2023	WPETER LORION //	simmune system	20

D (calciferol)	Liver, fish, egg yolk, formed beneath ski of man in sunlight	Building hard and strong bones and teeth Promotes absorption of phosphorus and calcium in the gut	Rickets —weak bones and teeth, rickets in children and dental caries
E (tocopherol)	All foods	Anti-oxidant to prevent excess energy production Promotes fertility in animals like rats	Sterility (infertility) in animals like rats Muscle weakness
K (phylloquinone)	Cabbage, spinach	Normal clotting of blood	Prolonged bleeding

Minerals

- When you are preparing meals at home, you always add salt. The salt is a source of some minerals needed by your body to function well.
- Minerals are inorganic substances that we need to ensure proper functioning of our tissues, fluids and skeleton.
- Some minerals are required in larger amounts in the body (macro minerals). While others are required in smaller amounts (micro minerals)

Activity

In groups, using the internet or Biology reference materials, research about the food sources and functions of the following minerals in the diet,

Calcium, iron, iodine, phosphorous and sodium

present your results in the table below;

Minerals	Function	Food source	
Calcium			
Iron			
Iodine	For normal functioning of the thyroid gland which controls the metabolic rate		
Phosphorus		Milk, cheese, liver, butter, egg yolk	
Sodium			
8/4/2023	@PETER L OKION 778001502,	758795415	32

Minerals	Function	Food source
Calcium	Gives bones and teeth rigidity and strength For functioning of muscles and nerves Needed for normal blood clotting	Milk, cheese and dairy products Foods fortified with calcium for example flour, cereals, eggs, fish and cabbage
Iron	For making Haemoglobin, (the red pigment in blood) which carries oxygen	Beef and meat products, egg yolk, bread, green leafy vegetables, pulses and fruits
Iodine	For normal functioning of the thyroid gland which controls the metabolic rate	Iodized salt, sea vegetables, sea fish, yoghurt, cow's milk, eggs and cheese
Phosphorus	For growth of bones and teeth Formation of energy store (ATP) Maintains constancy of body fluids	Milk, cheese, liver, butter, egg yolk
Sodium	Keeps electrolyte balance in the body Control the blood pressure and value	Table salt, salted nuts
8/4/2023	@PETER L OKION 778001502/	758795415 33

ROUGHAGES / DIETARY FIBRE

They are indigestible materials in food and consist mostly of cellulose, pectin, and lignin. The major sources of roughages include: vegetables, such as cabbages, dodo, fruits, etc.

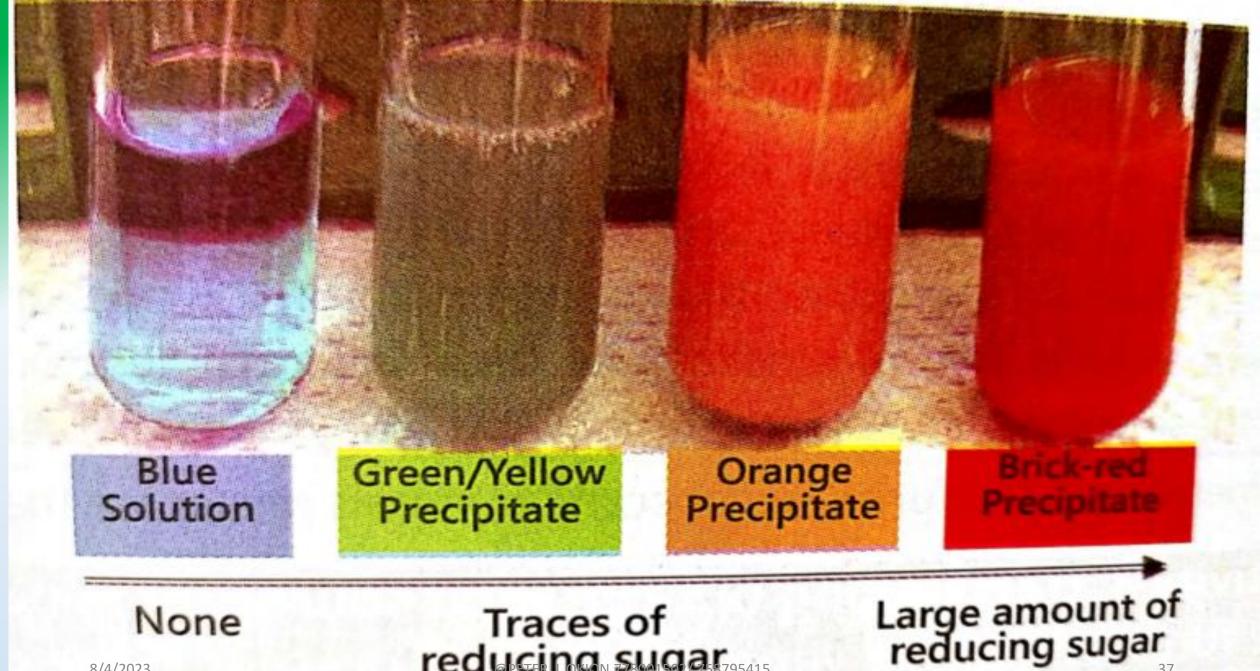
Functions of roughages

- ✓ They stimulate muscular movements called peristalsis which move food (propel) through the alimentary canal.
- ✓ Add bulk to food enable food nutrients pass through the intestines very fast.

NB: Deficiency or lack of roughages causes constipation.

Food tests

In the laboratory, tests are carried out to find out which nutrients are present in certain foods.

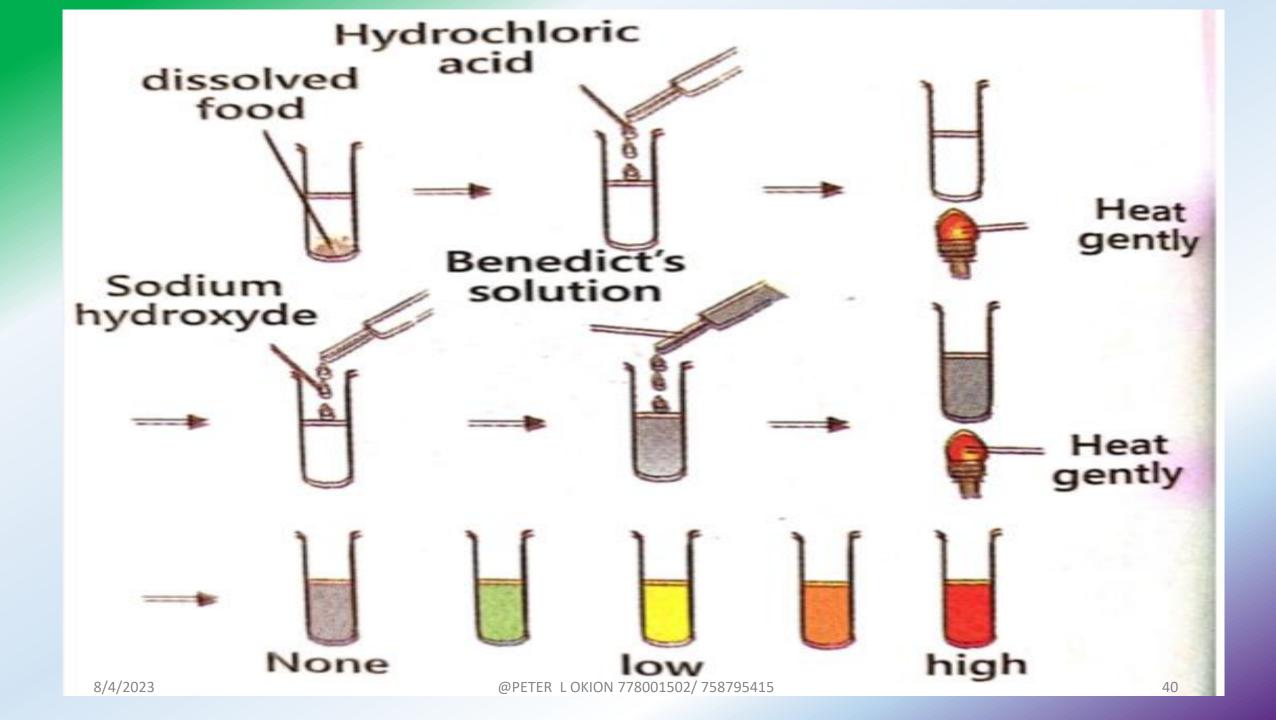

Chemicals known as reagents, are added to solutions which change **color** to indicate the **presence** or **absence** of particular substances in the food

Test for simple sugars

• Most of the simple sugars e.g. glucose are called Reducing sugars. These can be identified by adding **Benedict's solution** to the mixtures where simple sugars are suspected to be and then heating the mixture.

Observation

• The color of the food sample will change from **Blue** to **Green** to **Yellow** to **Orange** and finally to a **Brick-red** ppt to confirm the presence of reducing sugars


8/4/2023

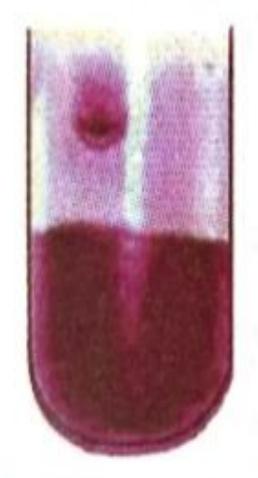
reducing Sugar, 95415

Procedure	Observation	Conclusion
To 1 cm ³ of food solution, add	Solution turns to a blue	
1 cm ³ of Benedict's solution	solution, then to a green	Little or
and boil.	solution, to a yellow	Moderate or
	precipitate, to orange	Much reducing sugars present.
	precipitate and to a brown	
	precipitate on boiling.	
	Solution turns to a blue	Reducing sugars absent.
	solution which persists on	
	boiling.	

Test for non-reducing sugars (sucrose/ cane sugar)

This is called so because it cannot change the color of Benedicts solution when heated. Therefore the sugars in the solution are first broken down to reducing sugars by boiling them in dilute Hydrochloric acid. Sodium hydroxide solution is added to neutralize the solution and then Benedict's solution is added to give observations as those seen for Reducing sugars

1. Test for non-reducing sugars


procedure	Observation	conclusion	
To 1 cm ³ of food solution add	Solution turned to a blue		
1 cm ³ of dilute hydrochloric	solution, then to a green	Little or	
acid and boil, cool under water	solution, to a yellow	Moderate or	
then add 1 cm ³ of sodium	precipitate and to a brown	Much non-reducing sugars	
hydroxide solution, followed	precipitate on boiling.	present.	
by 1 cm ³ of Benedict's	Colourless or turbid solution Non-reducing sugars abse		
solution and boil.	turned to a blue solution		
	which persists on boiling.		

Test for complex carbohydrates (starch)

• Starch can be identified by adding a few drops of iodine solution to a mixture in which starch is suspected to be a component.

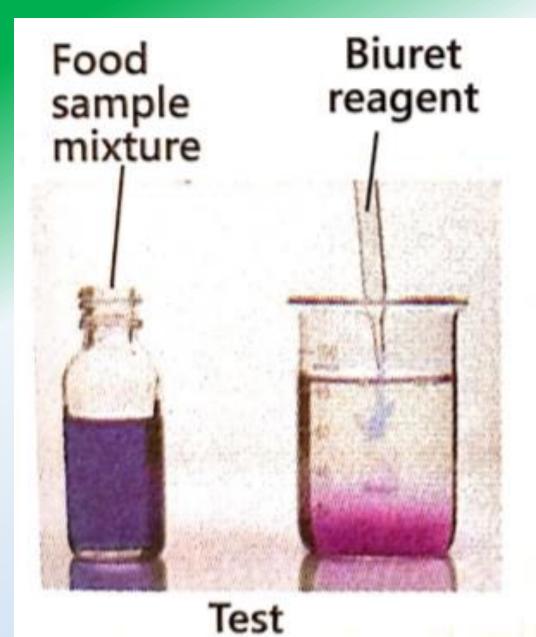
Observation

• The color of the solution turns black, blue-black or blue depending on the quantity of starch present

Positive result

Dark blue/black solution

Negative result Brown solution


Procedure	Observation	Conclusion
To 1 cm ³ of food solution,	Solution turned to a black or	Much
add 3 drops of iodine	blue-black or blue solution or	moderate
solution.	brown solution with black	little starch present.
	specks.	
	Solution turned to a yellow	Starch absent.
	or brown solution.	

Test for proteins (e.g. egg albumen)

• Proteins in food sources can be identified by using **dilute Sodium hydroxide solution** and **1% copper (II) sulphate solution**. This is called a **Biuret test**.

Observation

• This forms a **purple ring** around the top of the mixture and if the mixture is shaken, the contents turn **purple**

Test results

The Biuret test:

Procedure	Observation	Conclusion
To 1 cm ³ of test solution, add	Solution turns to a colourless	Proteins present.
1 cm ³ of sodium hydroxide	solution then to a violet or	
solution, then add 3 drops of	purple solution.	
Copper (II) sulphate solution	Solution turned to a blue	Proteins absent.
	solution.	+

Millon's test:

Procedure	Observation	Conclusion
To 1 cm ³ of food solution, add	A pink coagulated mass is	Proteins present
3 drops of Millon's reagent	formed.	
and boil.	Solution remained turbid or	Proteins absent.
	colourless.	

Test for Lipids

• Lipids in cooking oil can be identified by adding Ethanol, shaking well and then adding water to the mixture. This is called an **Emulsion Test**.

Observation

The mixture turns milky (white emulsion) if it contains lipids

NB: fats do not dissolve in water but dissolve in alcohol. If a solution of fat and alcohol is added to water, the fat forms tiny globules which float on water. This is called **an Emulsion**.

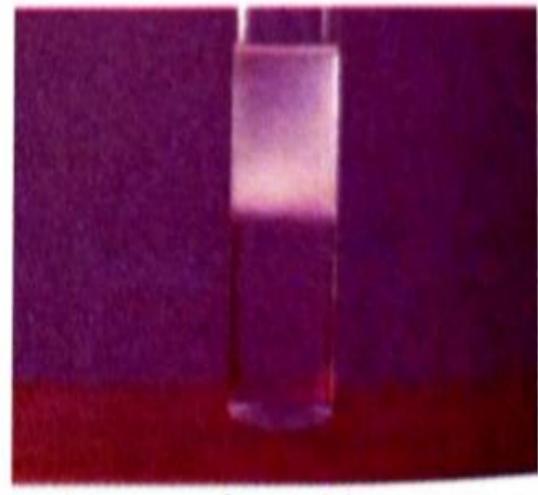


Figure 3.10: Results from emulsion test for Lipids

Alternatively;

• Fats can be tested using a **grease-spot test.** A solid piece of food containing lipids is rubbed onto a filter paper or any paper.

Observation

• A translucent mark is seen on the paper

a) The emulsion test:

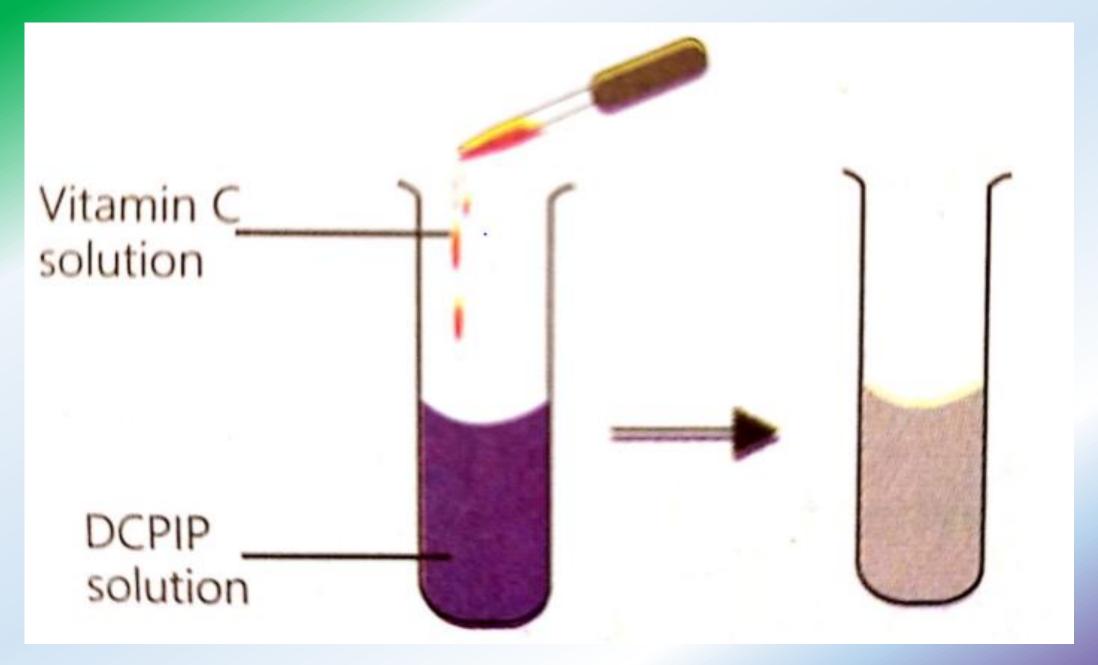
The reagents used are ethanol and water.

Procedure	Procedure Observation Deduction	
To 1 cm ³ of food solution,	Solution turns to a cream	Lipids present.
add 1 cm3 of ethanol and	emulsion	
shake. Then add 5 drops of	Solution remains turbid or	Lipids absent.
water and shake.	colourless solution.	

b) Translucent spot test:

Procedure	Observation	Conclusion
Add 2 drops of test solution	A translucent spot or patch	Lipids present
on a piece of filter paper.	is left on the paper.	
Allow to dry and observe	No translucent spot is	Lipids absent.
under light.	formed on the paper.	

Some plant seeds contain a large quantity of oil. This oil can be extracted for use by humans. Seeds e.g. groundnuts and sunflower, are pressed to provide cooking oil. Palm nuts from palm plants (like those in Kalangala islands) provide palm oil



Test for vitamin C

• Vitamin C is commonly found in fruit juices and vegetables. When 2cm3 of DCPIP solution is in a test tube and you add fruit juice containing Vitamin C drop by drop using a dropper, this is called the **DCPIP test**

Observation

- The DCPIP loses its color and may even become a turbid solution
- **NB:** The number of drops of juice required for DCPIP to lose it's color can be used to tell the quantity of vitamin C in the juice. The fewer the drops you add to DCPIP to lose it's color, the more vitamin C present in the juice.
- DCPIP- 2,6-Dichlorophenolindophenol

Procedure	Observation	Conclusion
To 1 cm ³ of DCPIP solution in	The blue DCPIP solution is	Vitamin C present
the test tube, add the food	decolourised or turned to a	
solution drop wise.	colourless solution.	•
	The blue DCPIP solution	Vitamin C absent
	remained blue.	

A balanced diet

A person's diet consists of all the foods and liquids that he or she eats and drinks. A **balanced diet** gives us all the nutrients we need in the right amounts, as well as enough energy for our body to function well. The amount of energy we need is measured in kilojoules (kJ).

8/4/2023

foods high in sugar or fat

BALANCED DIET

Activity

- 1. In groups, write down the food stuffs that made up the meals you ate the previous day in the table below.
- 2. Compare the food stuffs in the meals eaten by other members in the group and find out the common food nutrients.
- **3.** Discus whether the meals of the group members represent a balanced diet or not.
- **4.** If the meal is not balanced, how can you advice each other so as to have a balanced diet.
- 5. Define a balanced diet

Present your findings to the rest of the class

Meal	Food stuff	Nutrient present
Breakfast		
Break		
Lunch		
Supper		
8/4/2023	@PETER LOKION 778001502/ 758795415	58

Meal	Food stuff	Nutrient present
Breakfast	Black tea/milk and bread	Proteins, vitamins, carbohydrates
Break	Porridge and bread, sweet bananas	Roughages, carbohydrates, vitamins, proteins
Lunch	Matooke/banana, green vegetables, ground nuts, fish, posho	Carbohydrates, water, vitamins, lipids, roughages and proteins
Supper	Rice, beans, posho, black tea	Vitamins, proteins, carbohydrates
8/4/2023	@PETER L OKION 778001502/ 758795415	59

Table 7.3 Food groups and their percentages in the diet

Food group	Importance	Examples	% of diet
Carbohydrates	Provide energy for growth and development. Wholegrain forms are best because they provide extra fibre.	Bread, maize and cassava	33%
Fruits and vegetables	These foods provide vitamins and minerals needed for a healthy immune system. They also provide fibre. You should aim to eat five portions of these foods per day.	Bananas, spinach and tomatoes	33%
Dairy foods	These foods provide fat for energy, protein for muscle and nerve development, calcium for bone development and vitamins for fighting infections.	Milk, yoghurt and sour milk	15%
Non-dairy proteins	These foods provide protein needed for muscle and nerve development, and for tissues to repair after infections.	Meat, eggs, beans	12%
Foods high in sugar or fat	These foods should be limited to prevent excessive weight gain or problems with blood sugar.	Cakes, biscuits, fried foods, chocolate and cooldrinks	7%

Activity 7.2

Work in pairs.

The amount of energy different people need is shown in the bar chart in Figure 7.10. Look at the chart, and then answer the questions.

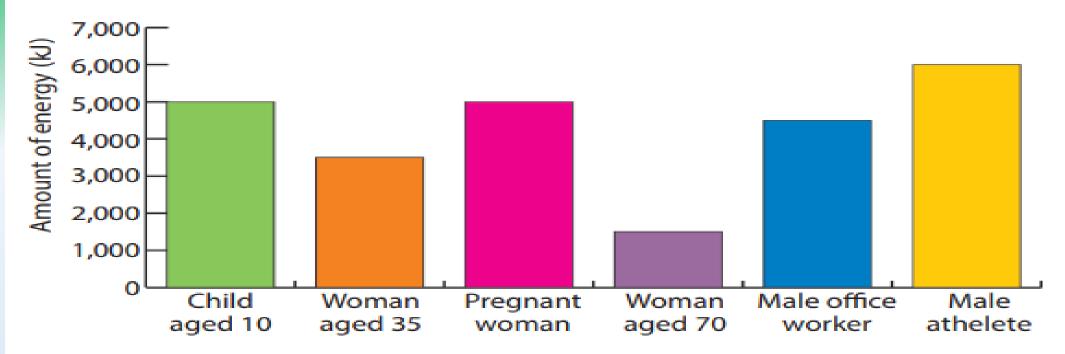


Figure 7.10 The amount of energy needed by different people

- 1. Which person needed:
 - a) the most energy

- **b)** the least energy?
- 2. Explain your answers to question 1.

8/4/2023

Understanding the balanced diet of individuals basing on sex, age and level of activity

Activity

- 1. Carefully study the pictures below and fill the table below
- 2. What is happening in pictures (a) to (f)
- 3. Discus the nutrients that should constitute a greater percentage in the diets of the individuals in the pictures below
- **4.** Suggest what would happen if the individuals in the pictures above depend on an imbalanced diet.

Present your findings to the rest of the class

Picture	Balanced diet	Effect of imbalanced diet
a (baby crawling)	More proteins, vitamins and minerals, moderate carbohydrates and healthy fats and oils	
b		
С		
d		Underweight baby Difficulty in giving birth and breast feeding
e		
f		Obesity and diabetes
8/4/2023	@PETER LOKION 778001502/ 75	58795415 63

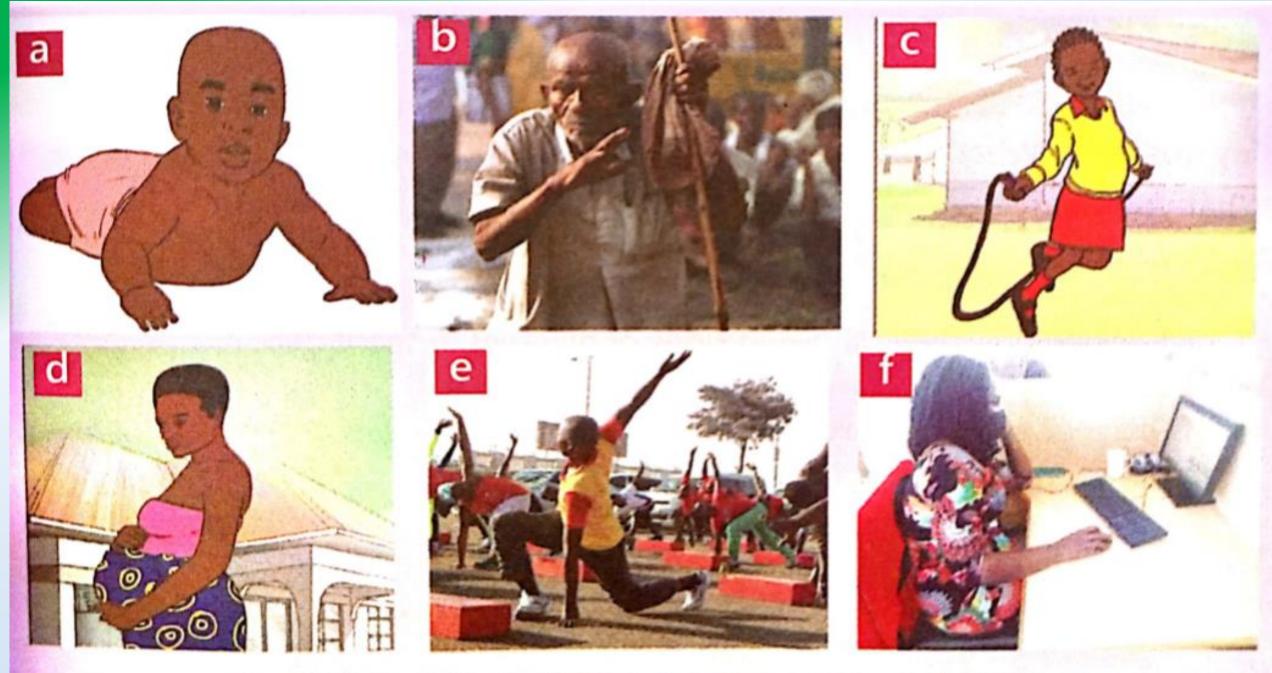


Figure 3.13: Individuals of different sex, age and level of activity

Picture	Balanced diet	Effect of imbalanced diet
a (baby crawling)	More proteins, vitamins and minerals, moderate carbohydrates and healthy fats and oils	Deficiency diseases depending on the nutrients lacking in the diet
b (old man walking)	Moderate proteins, more vitamins and minerals, little carbohydrates and no fats	Diseases due to lack of vitamins Diabetes and obesity incase more carbohydrates and fats are fed on
c (young girl playing)	More proteins, vitamins and minerals, moderate carbohydrates and healthy fats and oils	Deficiency diseases depending on the nutrients lacking in the diet
d (pregnant woman)	More proteins, minerals, vitamins and moderate carbohydrates and more healthy fats	Underweight baby Difficulty in giving birth and breast feeding
e (people exercising)	Carbohydrates, vitamins and minerals	Muscle wasting Weak bones leading to fractures Muscle cramps
f (inactive person)	Moderate proteins, minerals and vitamins Less carbohydrates	Obesity and diabetes

Nutrient Deficiency in Humans

• Malnutrition has a number of causes e.g. poor choices of food, poor cooking method or poverty where the food which the people get does not contain all nutrients in the right proportions

MB: Mal-Nutrition: This simply refers to an unhealthy state of the body resulting from a long term deficiency or excess of one or more of the essential nutrients.

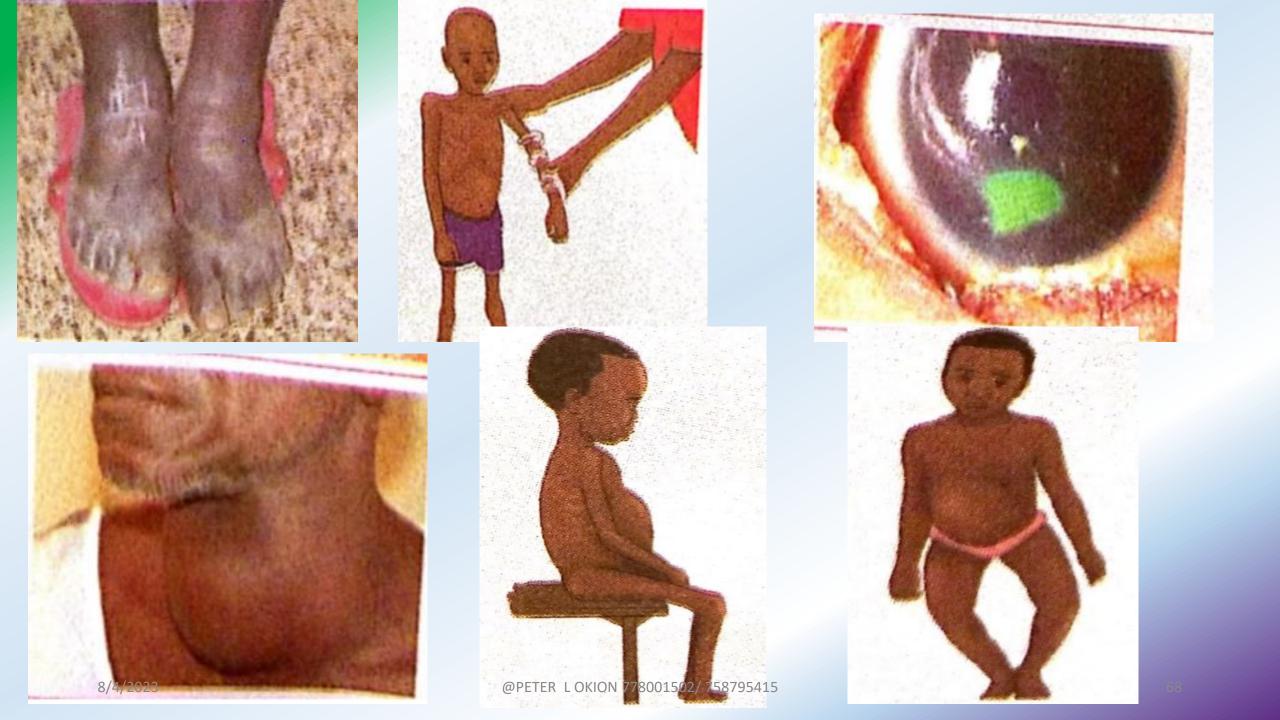

Figure 7.13 A child with marasmus

Figure 7.14 A child with kwashiorkor 67

Figure 7.12 The gums and teeth of a person with scurvy

@PETER LOKI

Deficient nutrient	SIGNS	Effect	
Vitamin B3	Has pellagra	Pellagra Disorders of CNS e.g. memory loss	
Proteins	i) The hair becomes soft and can easily be plucked out accompanied by loss of its colour. ii) Growth retardation iii) Pot belly i.e. swollen lower abdomen iv) Swollen legs and joints i.e. Oedema. v) Wasted muscles	Kwashiorkor	
Vitamin A	Night blindness due to pigmented eyes	Night blindness Frequent cold, sore eyes	
lodine	Swollen thyroid gland hence Goiter	Goiter	
Carbohydrates	i) Dehydration of the body iii) Growth retardation iv) Wastage of muscles v) Misery and shrunken appearance	Marasmus	
Vitamin D	Bow shaped legs due to weak bone	Rickets	
8/4/2023		69	

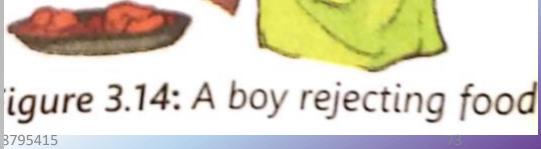
Picture	Deficient nutrient	Reason	Effect	Food source in community
	Vitamin B3	Has pellagra	Pellagra Disorders of CNS e.g. memory loss	Cereal grains, milk, liver, yeast
	Proteins	Deformed tissues	Kwashiorkor	Milk, eggs, beans, beef, cheese, peas, soya beans
	Vitamin A	Night blindness due to pigmented eyes	Night blindness Frequent cold, sore eyes	Green vegetables, liver, butter, margarine, carrots, egg yolk
	Iodine	Swollen thyroid gland hence Goiter	Goiter	Iodized salt
	Carbohydrates	Wasted muscle due to marasmus	Marasmus	Cassava, rice, maize, potatoes
8/4/2023	Vitamin D	Bow shaped legs due to weak bone @PETER LOKION 778001502/7	Rickets 58795415	Liver, fish, egg yolk, formed beneath skin in sunlight

Exercise

- Suggest reason (s) why;
- 1. Children who live in geographical locations where there is less sunshine are at a risk of getting rickets.
- 2. An individual whose diet is mainly animal products is most likely to develop scurvy.
- **3.** Pellagra is mainly found among individuals who depend on a vegetarian diet.
- 4. Pregnant and menstruating women are at a high risk of being anaemic

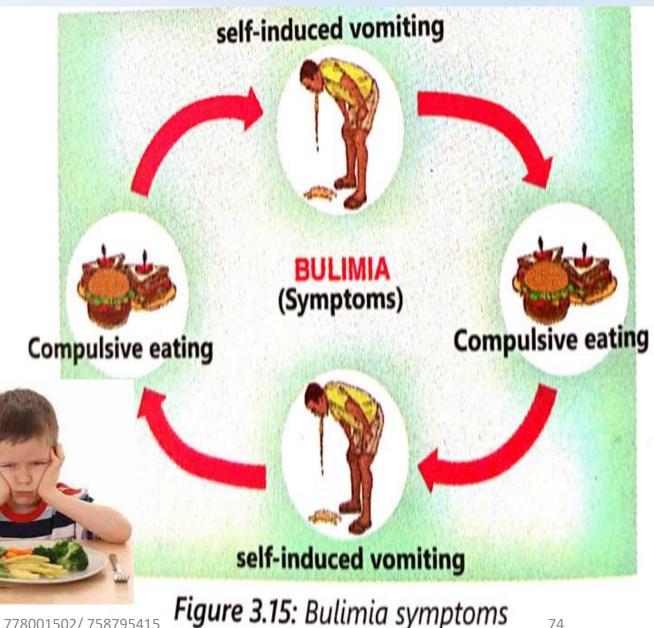
Soln

- 1. sunlight is necessary in the formation of vitamin D in the body to absorb Calcium and phosphates required for the formation of strong bones, from intestines. Less exposure to sunlight reduces production of vit. D thus less calcium and phosphate minerals required for strong bone formation are absorbed by the body
- 2. vitamin C is found in plants material and not in animal materials
- 3. pellagra is caused by lack of vitamin B in the diet, which is found in animal materials but is lacking in plant materials
- 4. pregnant and menstruating women lose blood which contains haemoglobin a protein containing iron


Eating disorders

1) Anorexia

Today, many young people look at being slim as a fashion. They starve themselves to avoid gaining weight. This eating disorder that is characterized by self-starvation is called **anorexia nervosa** or simply


anorexia

2) Bulimia

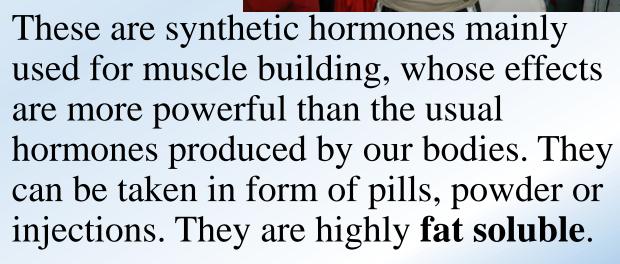
Just like anorexia, this disorder is associated with fear of gaining weight. It involves eating large amount of food in a short period of time(binge eating) followed by self-induced vomiting, fasting, or excessive exercise (purging)

3) Obesity

The height of a person can only support a given mass. Excess accumulation of body fat is called **Obesity**. This is caused by eating a diet that contains a lot of energy rich foods e.g. carbohydrates and fat. The body stores the excess energy as fat,

Obesity is evaluated by calculating **Body Mass Index** (BMI)

Use of diet pills and steroids


Diet pills

These are a class of drugs that facilitate weight loss. Diet pill drugs may work by curbing the appetite of the person who takes them or by his/her energy

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Steroids

NB: use of diet pills and steroids to change body shape is highly addictive and has many health threats if not well monitored

Assignment

Exploring the effects of eating disorders

In groups, research about dangers of eating disorders like;

- a) Obesity, bulimia and anorexia
- b) Use of drugs e.g. diet pills and steroids to change body shape

Write a report and include information on; the effect of eating disorders on health and social life of individuals

Eating disorder	Health effects	Social effects
Obesity	 ✓ Increased risk of diseases and conditions e.g. high blood pressure ✓ Type 2 diabetes ✓ Complications during pregnancy ✓ Stroke ✓ Coronary heart diseases ✓ cancer 	 Increased aggression and violent behavior Nervousness Impaired judgment Depression Mood swings
Anorexia	 ✓ Cardiac complication ✓ Kidney and liver failure ✓ Anaemia ✓ Low blood sugar ✓ Constipation, bloating and gastro intestinal issues ✓ Loss of menses in women (amenorrhea) 	 Withdraw from social situations especially those involving food Low self esteem Self destructive behavior e.g. self-mutilation (cut, burn or harm themselves to cope with painful emotions) Development of relationship difficulties
Steroids 8/4/2023	 ✓ Increased blood pressure ✓ Fast heart rate ✓ Restlessness ✓ Increased drug dependence ✓ Affects appetite 	 Dependence and addiction Failed relationships Avoiding social encounters and interactions

Eating disorder	Health effects	Social effects
Diet pills	 ✓ Increased risk of liver, kidney and prostrate cancer ✓ High blood pressure ✓ Abnormal cholesterol levels ✓ Premature stopping of bone development ✓ Baldness, breast formation, shrunken testicles in males 	 Prevents sexual intimacy Low levels of testosterone in males can lead to erectile dysfunction Reduced exercise due to fear of being bullied Negative self-image, demotivating the individual hence lacking self confidence
Bulimia 8/4/2023	 ✓ Feeling tired and weak ✓ Dental problems e.g. stomach acids from persistent vomiting can damage tooth enamel ✓ Bad breath ✓ Sore throat due to stomach acid ✓ Irregular or absent periods ✓ Dry skin and hair ✓ Brittle finger nails ✓ Bone problems e.g. osteoporosis ✓ Decreased breast size, irregular menstrual cycles 	 Self-isolation to achieve shape and being secretive to hide their behavior leads to relationship breakdowns Individual feels down, lonely, isolated and worthless Low body weight, physical complications and hormonal imbalances can decrease the woman's sexual drive

Calculating BMI and its significance

Body mass index is a persons' weight in kilograms divided by the square of his/her height in meters.

 $BMI = \underline{weight (kg)}$ $height^2$

A BMI chart is used to show weight classification and risk illness associated with being over or underweight

BMI chart

BMI range	Weight classification	Risk illness
Less than 18.5	Under weight	Increased
18.5- 24.9	Ideal weight	Normal
25- 29.9	Over weight	Increased
30- 39.9	Obese	High
40- 50	Morbid obese	Very high
50 or Greater 8/4/2023	Super obese @PETER LOKION 778001502/758795415	Extremely high 81

Activity

In groups, measure your weight (kg) using a weighing scale and height (m) using a metre rule or measuring tape respectively. Use the results to calculate your BMI

2) With reference to the standard BMI chart, interprete your BMI status, and discus the implications of being underweight or overweight. What can be done to remedy both cases?

Correcting underweight

- Eat more frequently e.g. have 5 to 6 smaller meals a day rather than 2 or 3 larger meals
- ➤ Choose nutrient rich food e.g. whole grains, bread, cereals, fruits, vegetables, diary products, lean protein sources, nutsy and seeds
- ➤ Add extras e.g. scrambled eggs and fat free dried milk in soup and stews
- ➤ Sip a high calorie beverage along with a meal or snack
- > Eat enough proteins
- Eat meals with fibrous carbohydrates e.g. brown rice and beans and healthy foods e.g. mono-saturated or poly saturated fats in foods e.g. nuts, avocados, oils and fish

Remedy for over weight

- ✓ Follow a healthy eating plan with fewer calories
- ✓ Start regular physical activity
- ✓ Enroll in weight management programmes
- ✓ Take weight loss medicines as prescribed by your doctor
- ✓ Undergo bariatric surgery for extreme obese individuals by making changes to individual's digestive systems
- ✓ Take calories restricted diets such as 120 to 150 calories per day for women and 1500 to 1800 calories for men
- ✓ Conduct intermittent fasting

Self-esteem and physical differences in body shape and size

Do you ever wish you could change something about your body? Some people feel unhappy about some parts of their bodies, which easily lowers their self-esteem

Self-esteem is how one perceives and values oneself. Self-esteem can be affected by people we always interact with e.g. classmates, parents, siblings and friends

NB: You do not need a particular body size and shape to be happy, everyone's body is perfect as long as he/she is in good health. Therefore, we need to accept and appreciate ourselves and other people

Activity

Write a short speech describing how you feel about your body in relation to size and shape. In your speech;

- a) Explain the importance of good feeding in maintaining a healthy body shape and state.
- b) Advise those who have low self-esteem because of their bodies.

Major plant mineral nutrients

Plants require nutrients in form of minerals for proper growth and development. The major plant nutrients include;

Nitrogen

Potassium

Calcium

Phosphorus

Magnesium

Sulphur

Activity

In groups, use the internet or biology reference material and make research on;

- a) Uses of the following plant nutrients: N, P, K, Mg, Ca, and S
- b) The effects of their deficiencies

Record your answers in the table below and present to the rest of the class

Element	Uses	Effects of deficiency
Nitrogen	Synthesis of amino acids, proteins and nucleotides Forms part of chlorophyll	Stunted growth Yellowing of leaves (chlorosis)
Phosphorous	Formation of ATP Synthesis of nucleic acids Formation of proteins	Red leaves Poor root growth Stunted growth Premature leaf fall off
Potassium	Formation of cell membrane and proteins Opening of stomata Enzyme activator	Yellow and brown edges of leaves Premature death
Magnesium	Formation of chlorophyll molecule Activates enzymes	Poor root and development of fruits Yellowing of leaves (chlorosis)
Calcium	Part of the cell wall Activates some enzymes Neutralizes certain acids in the soil	Poor root growth Stunted growth
Sulphur 8/4/2023	Vitamins, amino acids and protein synthesis @PETER L OKION 778001502/ 7587954	Yellowing of leaves Stems become weak and slender 88

Activity of integration

The people in your community have a challenge of deficiency diseases. You have been selected by your class teacher to represent your class on a sensitization campaign to help those people overcome the diseases.

TASK: Prepare a poster you will use to sensitize the people in your community on how to overcome the deficiency diseases

SUPPORT MATERIAL

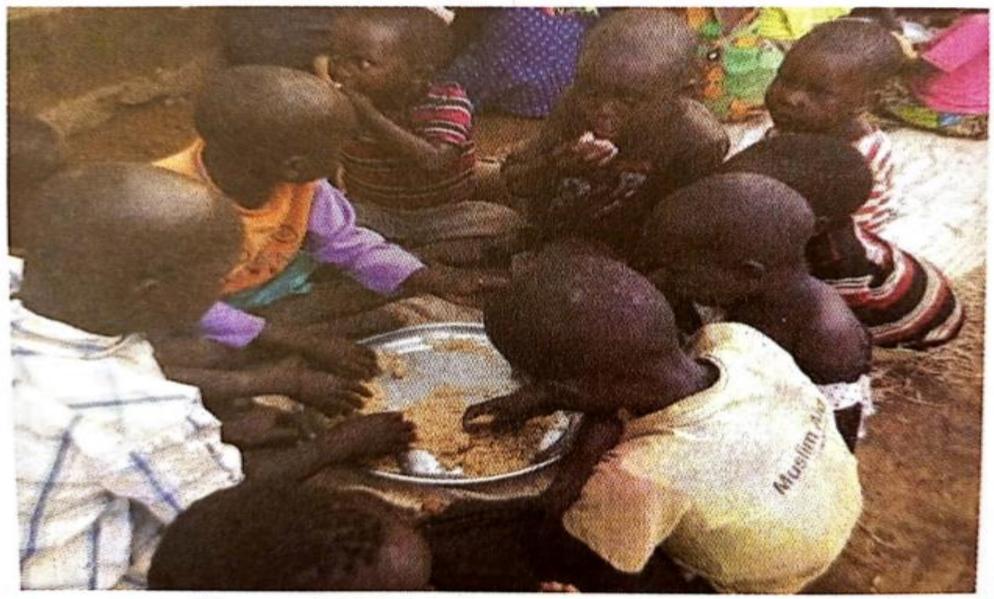


Figure 3.17: Malinutritions in Children

Test yourself

- 1. What is nutrition?
- 2. Complete the table below by filling in three major sources and two functions of the following food nutrients

Food nutrient	Example of food source	Functions
Proteins		
Carbohydrates		
Lipids		
Vitamin C		

3. A student conducted food tests on a given solution and presented information in the table below. Complete the table by filling in the gaps

ctd

Food test	Observation	Conclusion
Sample mixed with Benedict's solution and then boiled	Orange precipitate	
Sample mixed with sodium hydroxide and 1% copper (II) sulphate solution drop by drop		Proteins present
	Black suspension formed	
Sample mixed with ethanol and shaken water added to the mixture		Lipids present
8/4/2023 411 C	@PETER L OKION 778001502/ 758795415	92

Ctd

4. With a reason, identify the food nutrients needed in large amounts by the following people

a) elderly man

b) actively growing adolescent

c) pregnant woman

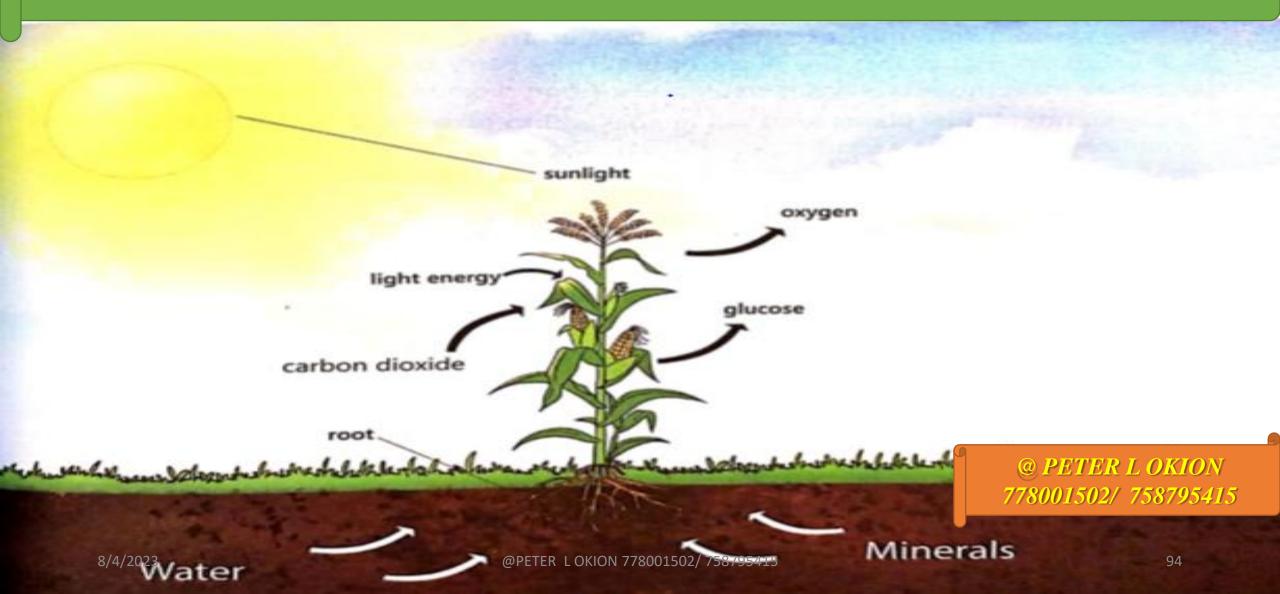
d) brick layer

5. Sonia wants to lose weight by eating plain rice for all her meals. Explain why it is not advisable for her to do so for a prolonged period of time.

6. Eric a farmer found his plants A, B, and C with the following characteristics;

A: Yellow leaves with green veins

B: Small sized with yellow underdeveloped leaves


C: Very poor root growth

a) identify the nutrient (s) each plant is lacking.

b) how can Eric improve the health of his plants?

BY ALEXANDER OF THE PROPERTY OF THE PROPERT

Nutrition In Green Plants

Introduction

Green plants like other living organisms, need food to carryout metabolic activities.

Have you ever seen plants feeding?
Do these plants feed in the same way that you do?
If not, where do they get their food from?

Use the picture below to brainstorm on the above questions

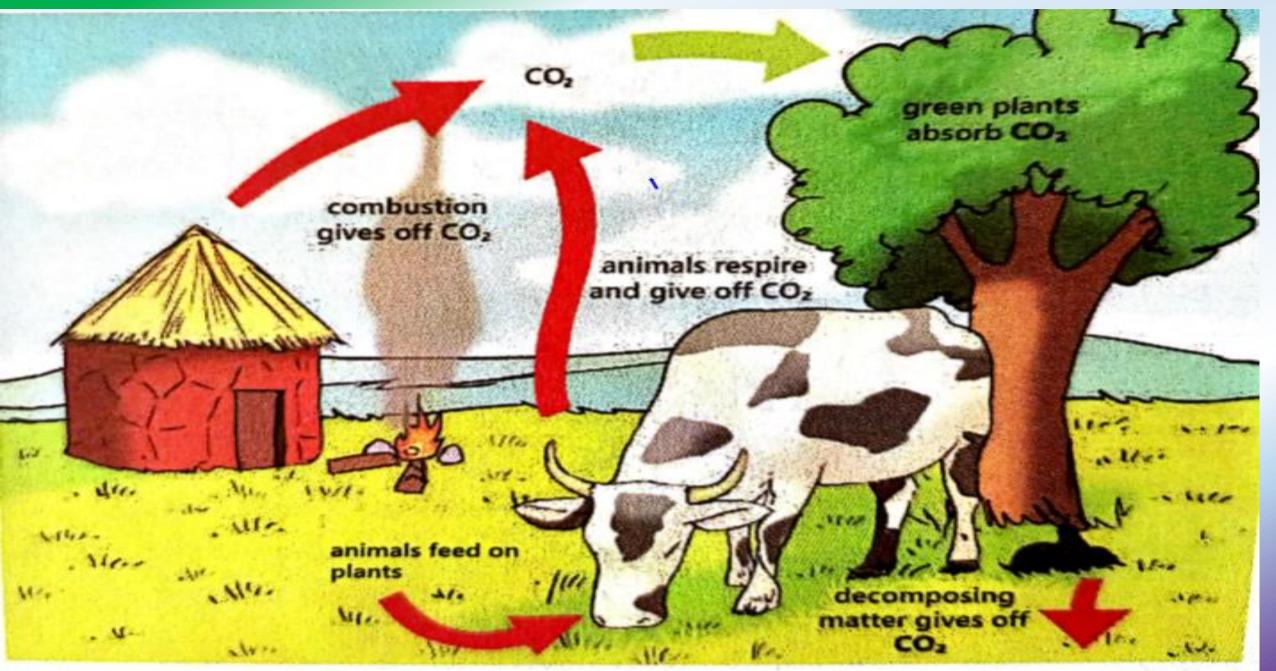


Figure 4.1: The role of plants in the environment

8/4/2023

Nutrition in organisms

How do different organisms within your environment obtain and utilize food?

- Some utilize simple materials like carbon dioxide and water to make food. And others utilize already made complex food substances.
- Some are autotrophic while others are **heterotrophic**.

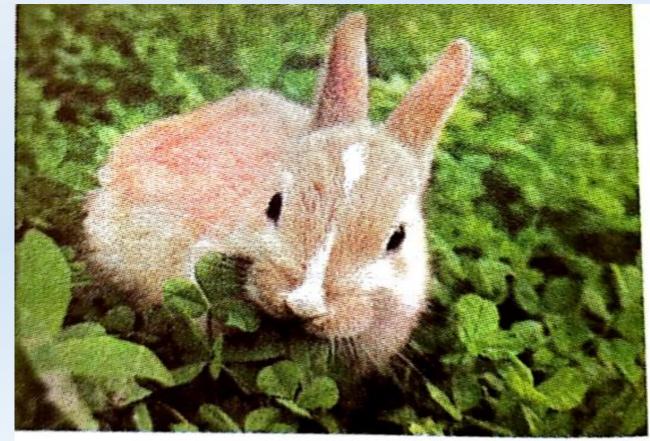


Figure 4.2: The rabbit feeds on plants, while plants make their own food.

Activity

In groups:

- 1. using the internet or any other Biology reference material, research and note down;
- a) the meaning of autotrophic and heterotrophic nutrition.
- b) why autotrophs are the providers of all food.
- c) the meaning of photosynthesis
- d) the equation for photosynthesis and it to explain what plants need for photosynthesis to take place.

Present your findings to the rest class

Soln

a) Heterotrophic nutrition (hetero, other; tropho, nourishment)

Means that organisms depend on organic nutrients obtained from others organisms due to their **inability** to manufacture their own food.

Such organisms are called **Heterotrophs**, these are further categorized into saprophytism, mutualism, commensalism, parasitism and holozoic nutrition

Autotrophic nutrition (auto-self)

Is where organisms make their own organic nutrients from an external supply of simple inorganic raw materials and energy.

Such organisms are called **Autotrophs**, autotrophic nutrition is further divided into **photosynthesis** and **chemosynthesis**

Ctd

b) since the nutrition of all other organisms depends either directly or indirectly on these autotrophs, they are referred to as **producers**

C) photosynthesis

It's a form of nutrition which occurs in all green plants, algae, some protists and photosynthetic bacteria (cyanobacteria)

It is the process by which organisms synthesize organic compounds (sugars, protein and lipids) from **carbon dioxide** and **water** using **sunlight** as a source of energy and **chlorophyll** or other related pigment for trapping the light energy.

d).

+ Oxygen

$$6CO_{2(g)} + H_2O_{(l)}$$
 Chlorophyll $C_6H_{12}O_{6(s)} + 6O_{2(g)}$
Sunlight energy

What plants need for photosynthesis to take place

Chlorophyll

This is a green pigment that absorbs light energy from the sun. the amount of chlorophyll present in a leaf is directly related to the rate of photosynthesis

Carbon dioxide

Its absorbed from the atmosphere through stomata, aquatic plants absorb carbon dioxide as hydrogen carbonates which diffuse directly from water to plant tissues.

• Light

This is the source of energy necessary for photosynthesis. The rate of photosynthesis **increases** with **increase** in light **intensity**, up to a maximum and levels off. Light intensity is used for the following purposes;

- 1.) splitting water molecules into hydrogen atoms and oxygen in a process called **photolysis**. The oxygen is given off by plants and hydrogen atoms combine with CO to form carbohydrates
- @PETER LOKION 778001302 providing energy for photo synthesis

Ctd

Temperature

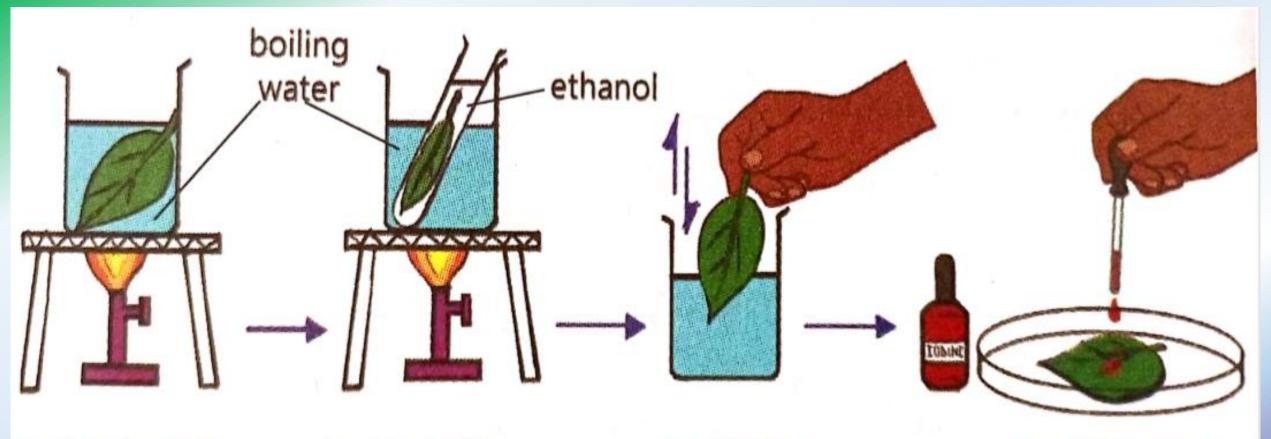
Photosynthesis proceeds by a series of chemical reactions controlled by enzymes.

Temperature is necessary for activation of enzymes that catalyze photosynthetic reactions

Water

Water is a raw material for photosynthesis. It is a source of hydrogen that reacts with carbon dioxide during photosynthesis. It is also an essential donor of electrons to chlorophyll

Exercise


- 1. explain how plants and animals depend on each other in nature.
- 2. why is photosynthesis an example of autotrophic nutrition?
- 3. why is it important for individuals to have potted plants in their houses during day time?
- **4.** in your opinion, what do you think are the direct and indirect ways in which we benefit from plants?

Conditions necessary for photosynthesis

These include light, carbon dioxide, water and chlorophyll

NB: to investigate the conditions required for photosynthesis to take place, a test for starch is necessary, to prove whether photosynthesis took place or not.

Test for starch in a leaf

leaf in boiling water

leaf in boiling ethanol

leaf being washed

starch test with iodine

Figure 4.3: Steps involved in testing for starch in a leaf 106

ctd

Procedure

1. DE touch the leaf

- 2. Dip a leaf in boiling water for a few minutes
- 3. After this, immerse it in a boiling tube containing alcohol
- **4.** Carefully place the boiling tube in a water bath and heat until the alcohol begins to boil to decolorize the leaf.
- 5. Dip the leaf in warm water to soften it
- **6.** Lay the leaf on a white surface and add drops of iodine solution or dip the leaf in a dilute solution of iodine for a few minutes

Observation

The decolorized surface of the leaf turns **Black/blue** including the **presence of starch** and turns **Brown** when starch is **absent**

Exercise

Explain why the following was done during testing for starch in a leaf:

- a) a leaf was dipped in hot water for sometime
- b) a leaf was boiled in alcohol
- c) a leaf was dipped in warm water after boiling it in alcohol.

soln

- a) to kill the protoplasm and stop any reactions in the leaf
- b) to decolorize the leaf by dissolving the chlorophyll
- c) to soften the leaf, preventing it from breaking

В

Fig 7.1 Types of leaves

a) chlorophyll

ON: do all plant leaves in your environment have the same color of the green pigment? If not why?

The necessity of chlorophyll is investigated using variegated leaves. Variegated leaves are those leaves with differently colored patches

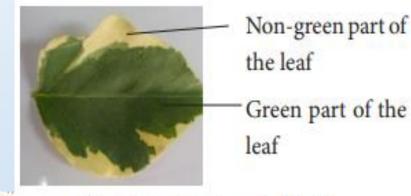


Fig. 7.3: A variegated leaf

Hibiscus plants

An experiment to show that chlorophyll is necessary for photosynthesis

Materials used

Beaker, alcohol e.g. ethanol, white tile, sheet of paper, dropper, source of heat, iodine solution, boiling tube and potted plant with variegated leaves kept in darkness for 24hours

Procedure

- a) the plant with variegated leaves is exposed to sunlight for about 2hours
- b) the parts of the leaf that are not green are used as the control experiment.
- c) at the end of the 2hours, a leaf is removed and then tested for starch

Ctd

Observation

The parts that were green are stained **blue-black** with iodine solution while the non-green patches are stained **brown** with iodine

Explanation

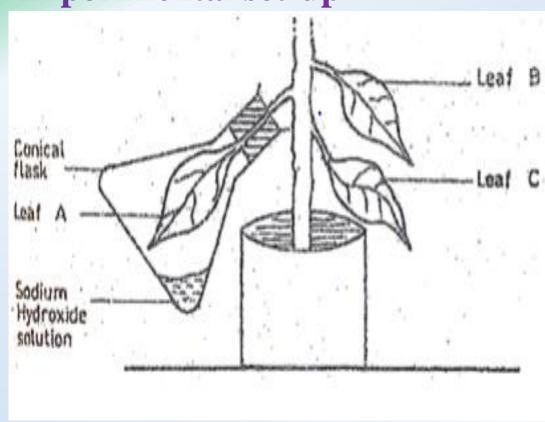
the green parts of the leaf contained chlorophyll and thus turned blue-black while the non-green parts did not contain starch as they lacked chlorophyll.

CONCLUSION

Chlorophyll is thus necessary for photosynthesis

An experiment to show that carbon dioxide is necessary for photosynthesis

Materials used


Potted plant kept in darkness for 24hours, iodine solution, ethanol, water bath, source of heat, white tile, sodium hydroxide solution, soda lime or sodium hydrogen carbonate solution, sheet of paper, dropper, conical flasks, boiling tubes

• Procedure

- a) one **leaf** labeled A while still attached onto the plant is completely enclosed in a transparent conical flask containing sodium hydroxide solution
- b) a control experiment is set up, by enclosing another **leaf B** on a plant in a conical flask containing sodium hydrogen carbonate
- c) The potted plant is then left in sunlight for 6hours
- d) The enclosed leaves are then detached from the plant and then tested for starch using iodine solution

ctd

Experimental set-up

Observation

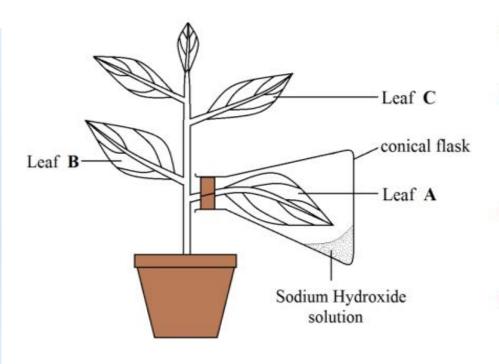
The leaf (A) in a conical flask containing sodium hydroxide solution remains Brown when tested for starch while the leaf (B) in a conical flask containing sodium hydrogen carbonate (control experiment) turned Blueblack

ctd

Explanation

Sodium hydroxide added to conical flask with **leaf A** absorbed all the carbon dioxide within the conical flask so the leaf did not photosynthesize due to lack of carbon dioxide.

For **leaf B**; sodium hydrogen carbonate in the conical flask was decomposed releasing carbon dioxide to the leaf hence photosynthesis took place


Note: water can also be used instead of sodium hydrogen carbonate or the leaf can simply be left exposed to air like in leaf C

Conclusion

Carbon dioxide is necessary for photosynthesis

Sample question

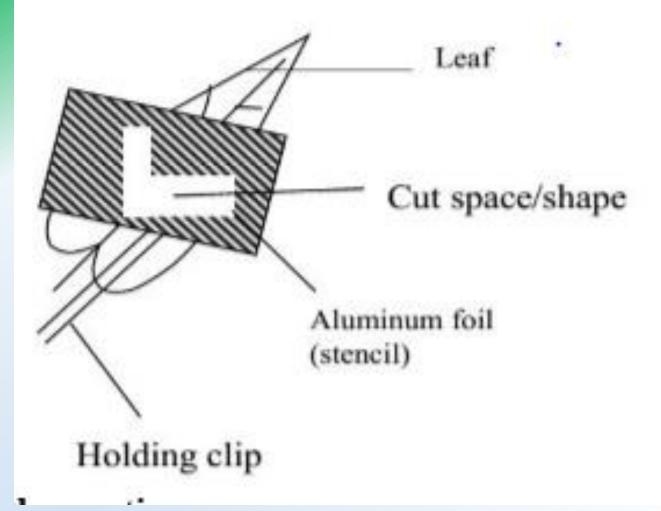
To investigate the effect of carbon dioxide on photosynthesis, a green plant was destarched by leaving it in darkness for 24 hours. After destarching, leaf A was put in a conical flask as shown in the figure below while leaf B was immediately tested for starch. The setup was then left in light for 12 hours after which leaf A and leaf C were tested for starch.

- (a) Why was sodium hydroxide used in the experiment? (01 mark)
- (b) State two reasons why when the plant was placed in darkness for 24 hours it became destarched. (02 marks)
- (c) State the purpose of including each of leaves B and C in the experiment. (02 marks)
- (d) What was observed when each of leaves A, B and C were tested for starch? (03 marks)
- (e) Give reasons why each of the following are carried out while testing a leaf for starch:
 - (i) Put a leaf in boiling water.

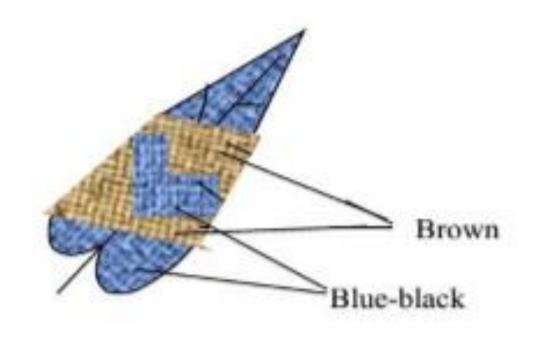
(01 marks)

(ii) Put a leaf in hot ethanol.

An experiment to show that light is necessary for photosynthesis


Materials used

Potted plant with leaves kept in darkness for 24hours, iodine solution, razor blade, Aluminum foil/black polythene, ethanol, white tile, sheet of paper, dropper, source of heat, boiling tubes, water bath


• Procedure

- a) simple L shape is cut from a strip of an aluminum foil to make a stencil.
- **b**) Place the stencil around the leaf still attached on the potted plant with the cut shape facing upwards where light strikes
- c) Expose the plant to sunlight for 3hours
- d) Detach the leaf with a stencil from the plant using a razor blade
- e) Remove the stencil and test the leaf for starch

Before testing for starch

After testing for starch

Observation

The parts which were covered by the stencil, turned **Brown** while the parts exposed to exposed to light turned **Blue-black**

Explanation

Putting the leaf in darkness removes starch from the leaf by converting the starch into simple sugars which are used by the plant. Putting the plant in light allows photosynthesis to take place. Covering the leaf with a stencil prevents light from reaching certain parts of the leaf. During exposure to light, the parts covered do not access sunlight and do not photosynthesize while uncovered parts access sunlight and photosynthesize. Testing for starch helps to find out whether photosynthesis took place or not.

ctd

Conclusion

Light is necessary for photosynthesis to take place

• Exercise

- 1. Why was a potted plant kept in darkness for 24hours used in the experiment?
- 2. Why were control experiments conducted in the investigations above?

Soln

- 1. to DE starch the plant before beginning the experiment
- 2. to prove that chlorophyll, carbon dioxide and light were indeed necessary for photosynthesis to take place

The rate of photosynthesis

• This can be determined by counting the number of oxygen bubbles produced in a given period of time.

• NB: The rate of photosynthesis is affected by a number of factors e.g. temperature, light intensity, carbon dioxide concentration, etc...

Effect of temperature on rate of photosynthesis

Photosynthesis is an enzyme- catalyzed reaction and is therefore affected by temperature.

If temperatures are low, plants photosynthesize very slowly;

But as temperature increases, the rate of photosynthesis also increases.

Rate of photosynthesis is highest at optimum temperature.

Further increase in temperature above optimum results to a decrease in rate of photosynthesis since enzymes are denatured.

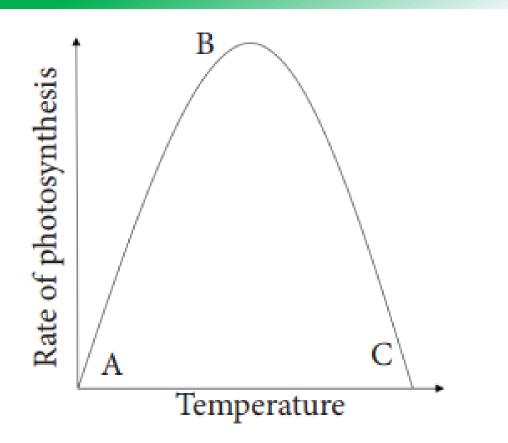


Fig. 7.10: Effect of temperature on the rate of photosynthesis

AB – Increase in temperature causes a corresponding increase in the rate of photosynthesis because increase in temperature to optimum (B) activate more enzyme molecules that catalyze faster photosynthesis.

The rate of photosynthesis is highest at B. (at optimum temperature)

BC – Any further increase in temperature denatures the enzymes. Therefore the rate of photosynthesis declines.

Effect of carbon dioxide concentration on the rate of photosynthesis

The amount of carbon dioxide in the atmosphere is quite low (0.03%). Therefore it can also be a limiting factor to photosynthesis.

Increase in carbon dioxide increases the rate of photosynthesis.

But this continues only to a certain point where rate of photosynthesis does not increase further with more carbon dioxide since other factors affecting photosynthesis become limiting

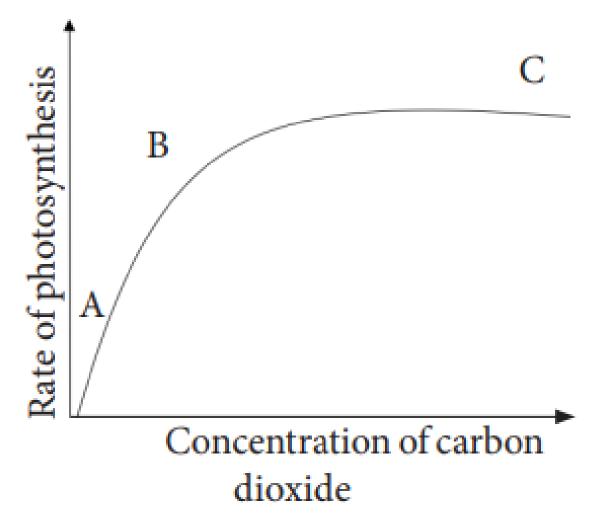


Fig. 7.9: Graph of effect of carbon dioxide concentration on the rate of photosynthesis

AB: Increase in concentration of carbon dioxide causes an increase in rate of photosynthesis. carbon dioxide is a raw material for photosynthesis; more carbon dioxide provides a larger source of carbon for synthesis of carbohydrates during photosynthesis

BC: Limiting factors set in and a further rise in carbon dioxide concentration does not cause a corresponding increase in rate of photosynthesis

Effect of light intensity on the rate of photosynthesis

Light is a necessity for photosynthesis to occur.

In darkness, plants cannot photosynthesize at all.

In low light intensity, the rate of photosynthesis is low.

But as light intensity increases, the rate of photosynthesis also increases.

There reaches a point where the plant cannot photosynthesize any faster even with further increase in light intensity.

At this point, any other factor affecting the rate of photosynthesis hinders the rate of photosynthesis.

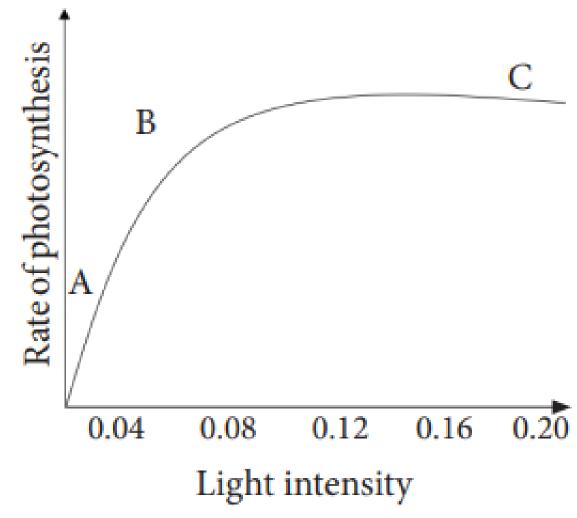


Fig. 7.8: A graph showing effect of light intensity on rate of photosynthesis

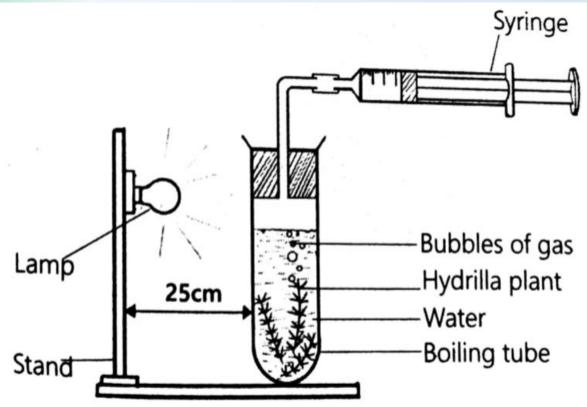
Between points A and B;

Increase in light intensity leads to an increase in the rate of photosynthesis. Because;

increase in light intensity provides more energy for driving the process of photosynthesis by exciting more electrons and releasing more hydrogen atoms which reduce carbon dioxide to form carbohydrates.

Light is therefore a limiting factor.

Between B and C however, the plant cannot photosynthesize any faster even with increase in light intensity.


At this point, light is no longer a limiting factor. Instead, other factors limit the rate.

Activity

A shoot of hydrilla was placed in a boiling tube containing pond water. A bench lamp with a shinning bulb was placed 25cm away. The set up was connected to a syringe. The concentration of oxygen was recorded every after 5minutes for 10 minutes. The experiment was repeated using the same hydrilla in the same boiling tube but with the lamp placed 5cm away from the boiling tube

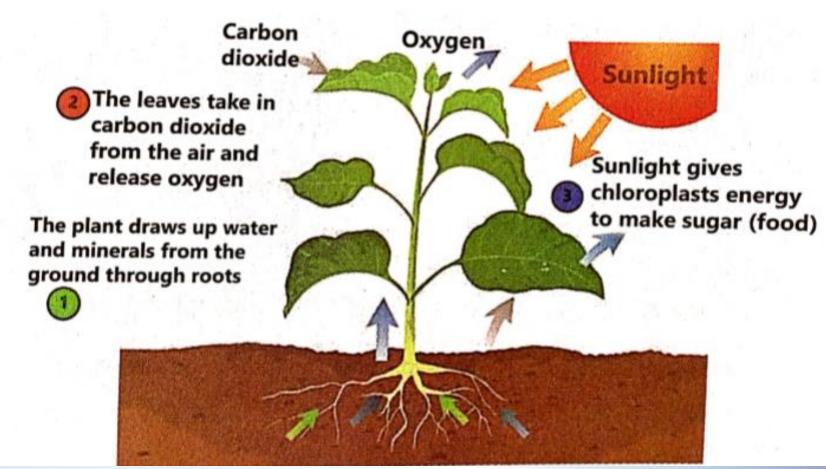
Results

Illustration

Table of results

Distance of the lamp/cm	Oxygen concentration after 5minutes	Oxygen concentration after 10minutes
25	60	65
5	64	84

Questions


- a) Based on the results of this experiment, explain the effect of light intensity on oxygen production
- b) What process is being investigated when oxygen concentration is measured in this experiment?
- c) Why is the measurement of oxygen concentration considered as inaccurate measurement of the rate of the process stated above?
- d) State one environmental condition that would need to be kept constant during this experiment. Describe how this condition can be kept constant'
- e) How are plant leaves adapted for photosynthesis?

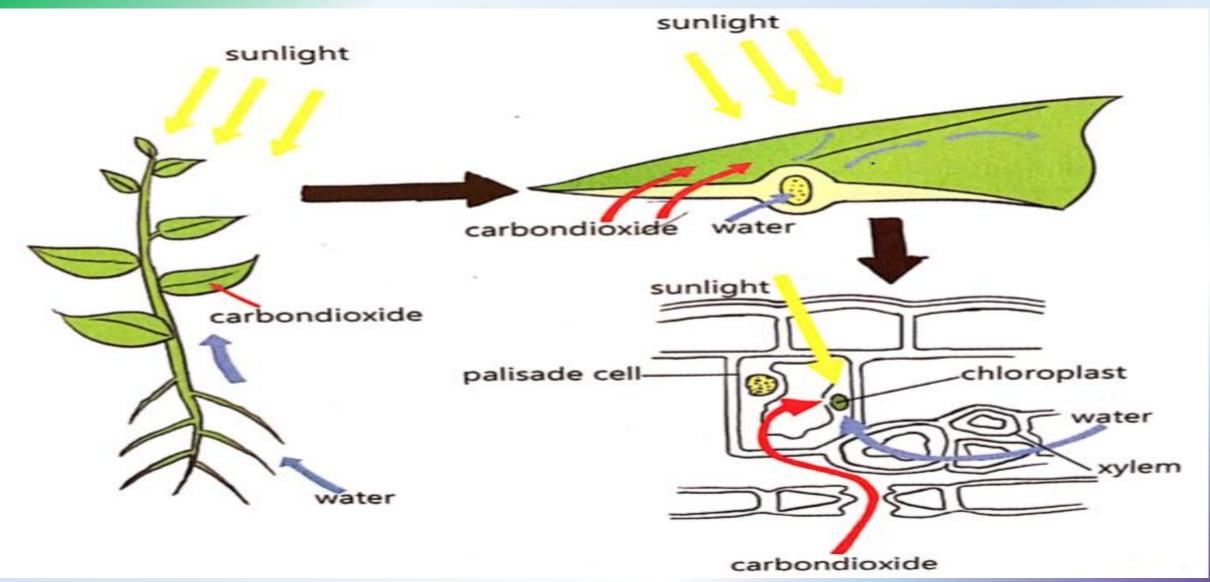
The leaf as an organ for photosynthesis

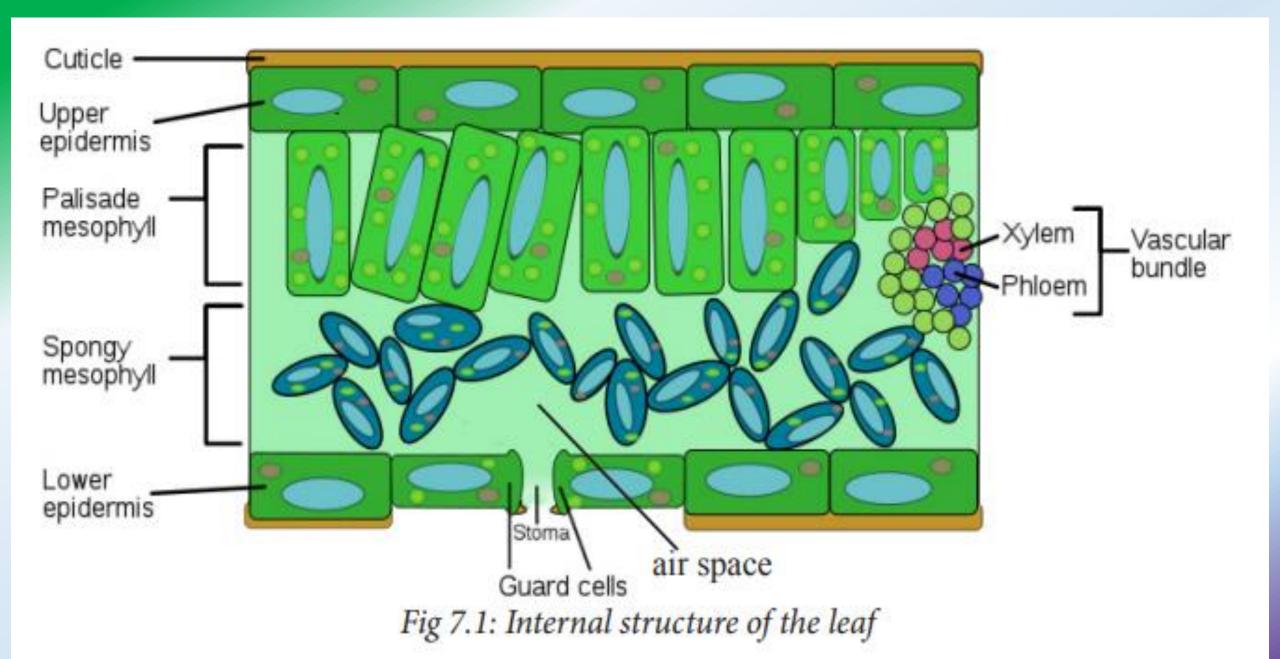
External features

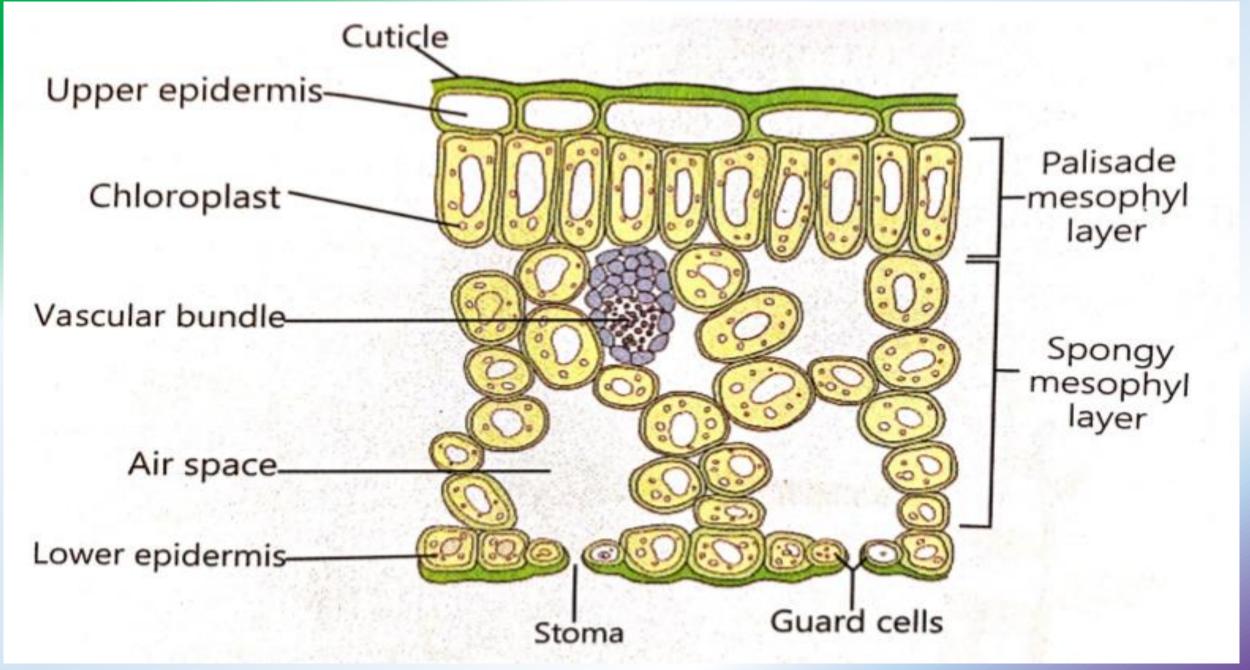
Materials needed for photosynthesis are obtained by plant parts from the

environment

Activity


• Observe the plant image above or (observe the potted plant provided by the teacher); observe the leaf and note the arrangement of veins, size and thickness of the lamina.


QN: How do these features enable the plant to photosynthesize more efficiently?


soln

- Some leaves are broad provides a large surface area for trapping sunlight and taking in of Carbon dioxide.
- Numerous leaves which increase the total surface area exposed for sun light absorption thus increasing the rate of photosynthesis.
- Thinness and flatness of leaves providing a short distance for penetration of sunlight and diffusion of carbon dioxide.
- Leaf arrangement /mosaic; Leaves are arranged to ensure minimum shading of one leaf by another from light in such a way that each leaf obtains maximum sunlight for photosynthesis. This is minimum shading of one leaf by another to ensure maximum light absorption is called leaf mosaic.

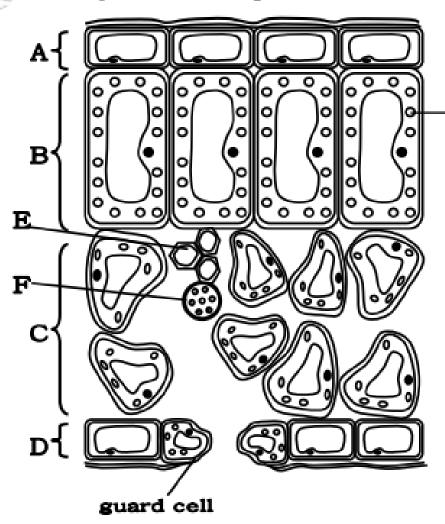
Internal features

Activity

• From the illustrations above, observe and record the internal adaptations of the leaf to carry out the process of photosynthesis

Internal adaptations of a leaf for photosynthesis

- Presence of numerous chloroplasts in the palisade mesophyll layer, to absorb maximum light for photosynthesis
- Presence of a spongy mesophyll layer with air spaces to allow easy diffusion and exchange of gases during photosynthesis.
- Presence of xylem vessels which transport water a raw material for photosynthesis from stems to the leaves where it's required.
- Presence of phloem which conduct away manufactured food to storage organs thus maintaining a concentration gradient for manufacture of more organic materials.
- Presence of numerous stomata to allow carbon dioxide to diffuse into the leaf for photosynthesis.


ctd

- Presence of a cuticle, a water tight layer which prevent desiccation (water loss) by the photosynthesizing tissues.
- Transparent cuticle to allow light penetration
- Numerous chloroplasts providing a large surface area for photosynthesis to take place.
- Numerous chlorophyll molecules in chloroplasts to absorb maximum sunlight energy for photosynthesis.
- Has closely packed palisade cells with numerous chloroplasts to increase surface area for maximum light absorption

Sample question

chloroplast

The figure below represents a transverse section of a leaf.

- a) Name the parts labeled **A**, **B**, **C** and **D**. (02 marks)
- b) How are cells in layers **A**, **B** and **C** adapted to perform their functions?

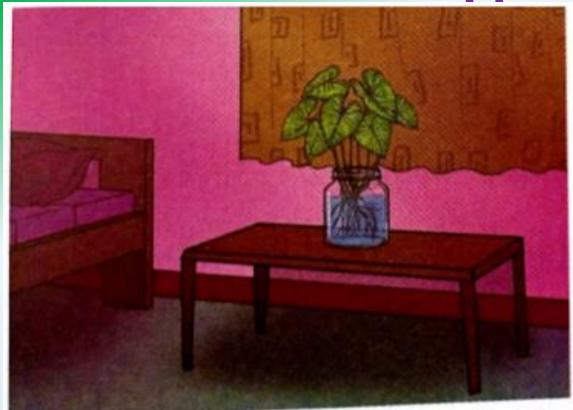
 (03½ marks)
- c) Name the materials transported by structure **E** and **F**. (01½ marks)
- d) From the figure, state three adaptations of a leaf for uptake of carbon dioxide for photosynthesis. (03 marks)

Activity of integration

- A man who lives alone at his home in a certain district had 3 plants at home that he treasured so much.
- ✓ An arrow head plant that he grew in a nutrient rich bottle
- ✓ A pond weed. Hydrilla, grown in a sealed transparent container that he regularly opened and added sodium hydrogen carbonate to.
- ✓ A hibiscus plant in a porous pot containing soil that he watered every day

The hibiscus and the pond weed were stationed on a well-lit, water proof veranda, while the arrow head was stationed in his bedroom. One day the man left his home and went to visit a friend where he spent 2 month. On coming back, he found when his three plants had dried

Support material



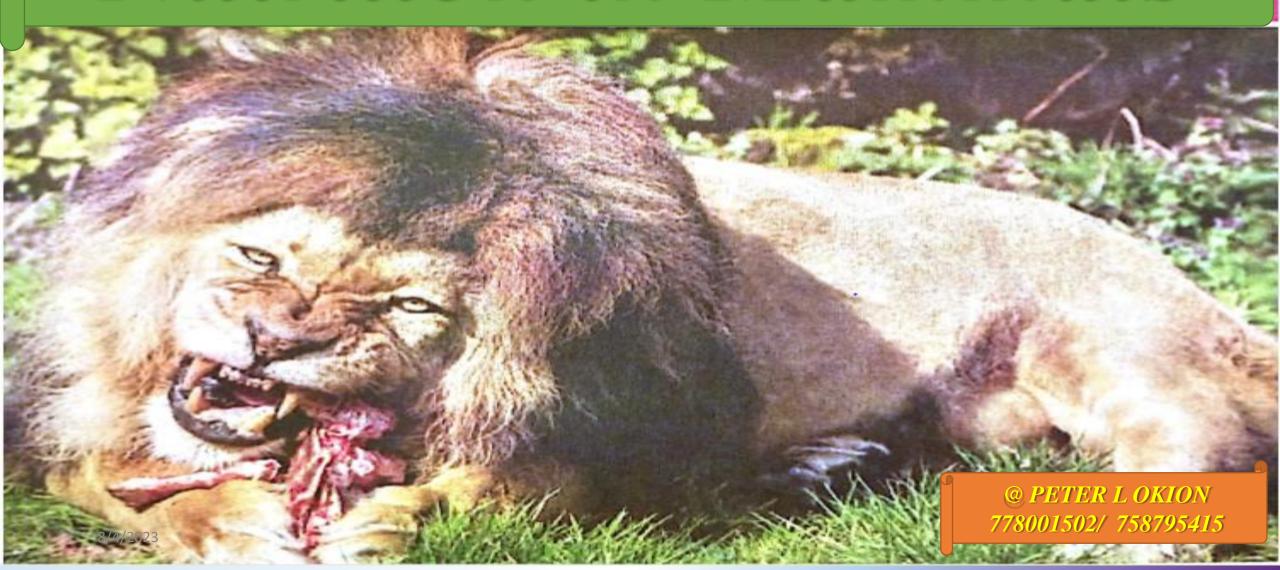

Figure 4.9(a): An arrow head plant in a bedroom

Figure 4.9(b): Hibiscus plant and pond weed on a veranda

TASK: write a report you will use to explain to this man what could have caused the drying of his plants

Nutrition in Mammals

By the end of this chapter, I should be able to;

- ✓ Understand the role of enzymes in influencing life processes
- ✓ Conduct experiments on and explain the effects of pH and temperature on enzyme activity
- ✓ Know and identify the different types of mammalian teeth and relate their structure and position in the jaw to diet.
- ✓ Understand the importance of oral hygiene and describe good practice in caring for teeth and gums in humans
- ✓ Appreciate the structure of the different parts of the mammalian alimentary canal, and its role in the digestion of food
- ✓ Understand how end products of digestion are absorbed and assimilated.

Introduction

QN: Can animals live without plants?

Obviously not! Animals get their food from plants, by directly or in directing eating plants.

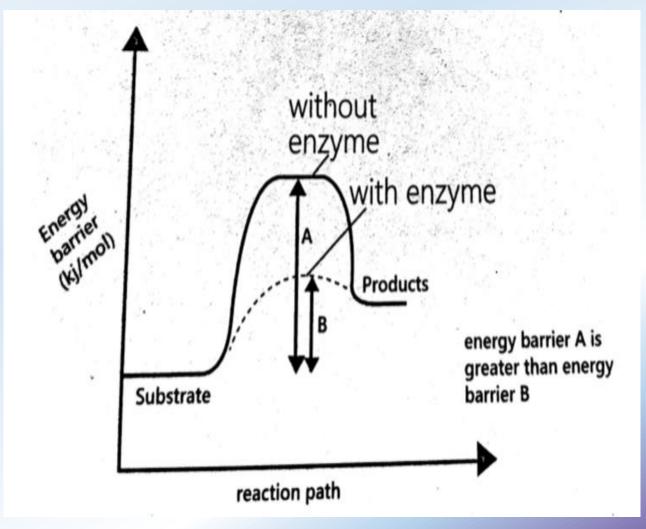
All animals, including humans, require already made food for growth, repair and normal body functioning. That is why they are said to be **HETEROTROPHIC**

ENZYMES

The human body has catalysts called enzymes which quicken the process of breaking down food. Enzymes increase the speed of the reactions in our bodies.

NB: an enzyme is a biological catalyst, protein in nature and produced by living cells, which speeds up the rate of a biochemical reactions but its not changed in the process.

Activity


In groups, use the internet or any other Biology reference materials to research, discuss and write about:

- a) Effects of enzymes on biochemical reactions
- b) Properties of enzymes
- c) The names and functions of some enzymes that work in the digestive system.

Present your findings to the rest of the class for further discussion.

Effect of enzymes on biochemical reactions

a) Enzymes are biological catalysts that alter the rate of biochemical reactions. They make biochemical reactions to occur faster than if they are absent. They do this by providing an alternative route that requires less energy to convert substrates into products as seen in the graph below.

ctd

Properties of enzymes

- ✓ They are protein in nature.
- ✓ They are specific in their action i.e. they catalyze specific food i.e. Maltase on Maltose.
- ✓ They speed up the rate of chemical reactions (they are catalysts).
- ✓ They are required in small amounts to catalyze reactions.
- ✓ They remain unchanged at the end of the reaction.
- ✓ They are denatured by high temperatures since they are protein in nature and are inactivated by low temperatures.
- ✓ They are inactivated by inhibitor chemicals (poisons e.g. cyanide).
- ✓ They work at a specific PH. (either acidic or alkaline)

C)

ENZYME	LOCATION	FUNCTION	
ptyalin/salivary amylase	Saliva secreted by salivary glands in the mouth	Catalyses the conversion of starch to maltose	
Renin	Gastric juice secreted by gastric glands in the walls of	Coagulates soluble milk protein caseinogen to insoluble casein	
Pepsin	the stomach	Catalyses conversion of proteins to peptides	
Trypsin	Pancreatic juice secreted by the pancreas into the	Catalyses conversion of peptides to amino acids	
Pancreatic amylase	duodenum	Catalyses conversion of starch to maltose	
Pancreatic lipase		Catalyses conversion of lipids to fatty acids and glycerol	
Maltase	Intestinal juice secreted by the walls of the ileum	Catalyses conversion of maltose to glucose	
Sucrase		Catalyses conversion of sucrose to glucose and fructose	
Lactase 8/4/2023	@PETER L OKION 7780	Catalyses conversion of lactose to glucose and galactose	

Exercise one

- i) Why does your body need enzyme?
- ii) Why can't proteases digest starch?
- iii) Why doesn't the body need as many enzymes as the number of substrates for effective digestion?

Soln

- i) To increase the rate at which biochemical reactions occur in the body thus enabling efficient body functioning
- ii) Proteases are specific in their action and can only catalyse the breakdown of protein and not starch.
- iii) Enzymes can be used over and over again since they are not used up in the reaction therefore one enzyme can catalyse the breakdown of a number of substrate molecules.

Exercise two

During food processing, manufacturers now days use enzymes to produce products for a lactose-free diet, to reduce the allergic effects of food to man.

- a) Name the enzyme that manufacturers use to produce these lactose free-diet products
- b) What do you think is the role of the enzyme in (a) above in the production process?
- c) What would be the effect of manufacturers continuing to produce their products without using the enzyme?

Soln

- a) The enzyme is lactase.
- b) The enzyme catalyse the breakdown of lactose to glucose and galactose.
- c) Increased allergy in man since the food will be containing lactose.

How enzymes work

Study Tip:

- ✓ The molecules which are acted upon by the enzymes are called **SUBSTRATES**
- ✓ The working of an enzyme is similar to that of a key and a lock. If the right key fits in the right lock, the lock can be opened but if it does not fit, the lock will not be opened.
- ✓ Similarly, if the right substrate fits in the enzyme active site, the product is formed but if it does not, the product is not formed. Only substrates with the proper shape can fit into the active site of the enzyme.

Illustration

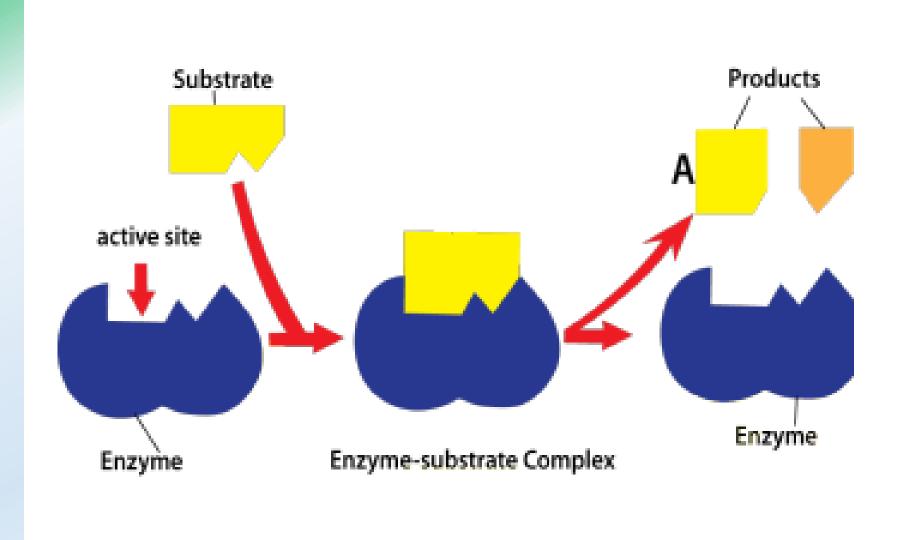
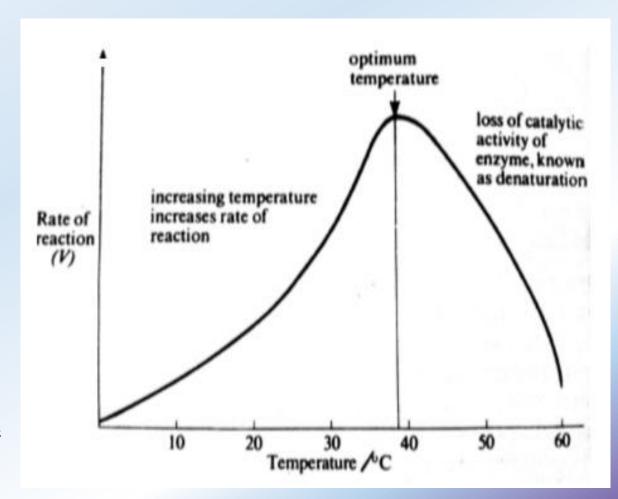


Fig. 6.6: Key and lock mechanism

ctd

The work of an enzyme depends on the factors e.g. **temperature** and **pH** in the environment where it is operating and the rate at which the enzyme works is also affected.

QN: which other factors affect enzyme activity?


Effect of temperature on enzyme activity

Enzymes work best at optimum temperatures.

At very low temperatures, the rate of enzyme reaction is **very slow** because of **low kinetic energy** leading to few collisions.

As the temperatures increases, the rate of reaction also **increases** due increasing kinetic energy resulting into an increase in effective collisions between enzymes and substrate molecules.

However, further increase in temperature reduces the rate of reaction since enzymes are **denatured** i.e. the shape of active site of the enzyme is changed.

Effect of pH on enzyme activity

Different enzymes have different pH at which they work best.

Most enzymes in the human body however, work best at pH 7 (neutral pH).

Some digestive enzymes have different optimum pH though. For instance pepsin digests proteins in the stomach at a pH of 2 while trypsin digests proteins in the duodenum at a pH of 9.

Extreme pH causes enzymes to denature and permanently lose their function.

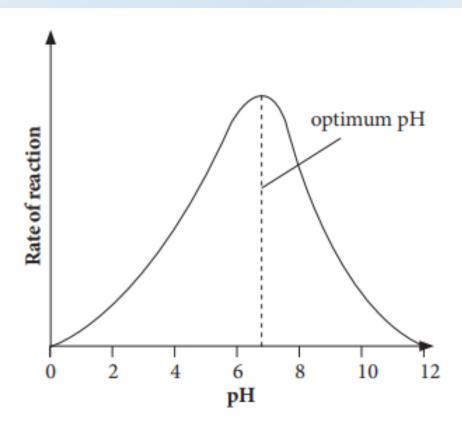
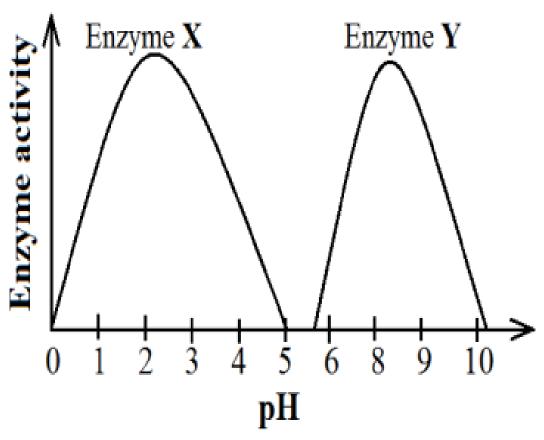


Fig. 6.4: Graph showing optimum pH (7) of an enzyme

Ctd

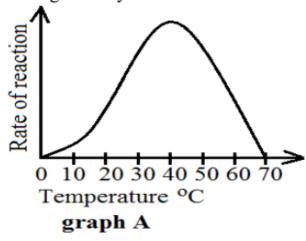

Enzyme	рН	Substrate	Products
Pepsin	2	Proteins	Short chain polypeptides
Salivary amylase	7.4 to 7.7	Starch	Maltose
Pancreatic trypsin	8	Short chain polypeptides	Peptides
Catalase	8	Hydrogen peroxide	Water and oxygen
Lipase	8 to 9	Fats	Fatty acids and glycerol

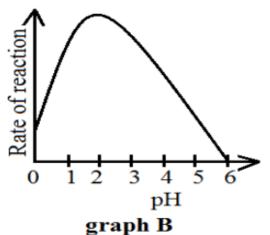
- Other factors affecting enzyme activity include;
- i) Concentration of the substrate
- ii) Presence of activators
- iii) Presence of inhibitors
- iv) Concentration of the enzyme

NB: explain how each of the above affect enzyme activity

Sample question

The graph below shows the effect of pH on the activity of enzymes X and Y.


- (a) What is:
 - (i) An enzyme? (01 marks)
 - (ii) Optimum pH of an enzyme? (01 marks)
- (b) State the optimum pH for each enzyme.


(02 marks)

- (c) Explain the effect of pH on enzyme X
- (d) With a reason in each case, suggest the name of enzyme **X** and **Y** and name the parts of the alimentary canal where you would expect to find each enzyme. (06 marks)

Sample question

The graphs below show the effects of temperature and pH on the activity of an enzyme in the human digestive system

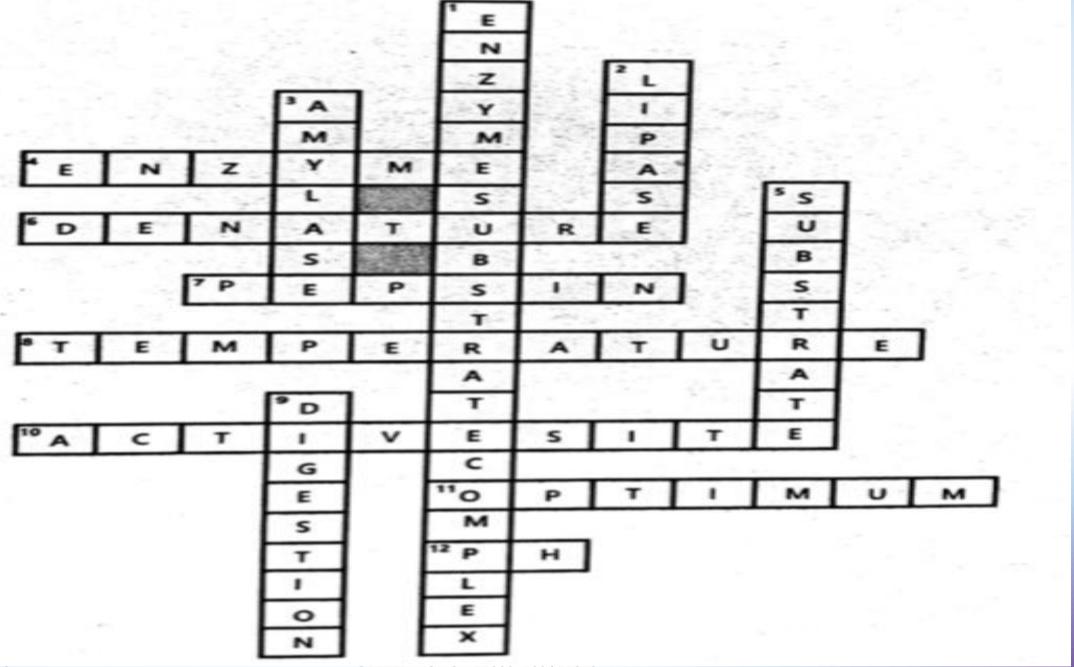
- (a). Describe and explain the trend of graph A. (06 marks)
- **(b).** Describe and explain the trend of graph **B**. (04 marks)
- (c). At what temperature and pH does the enzyme show optimum activity? (02 marks)
- (d). (i). Suggest the identity and location of this enzyme. (02 marks)
 - (ii). Give a reason for your answer. (01 mark)
- (e). For the enzyme stated in (d) (i) above, suggest the food it acts on and the end-products

(01 mark)

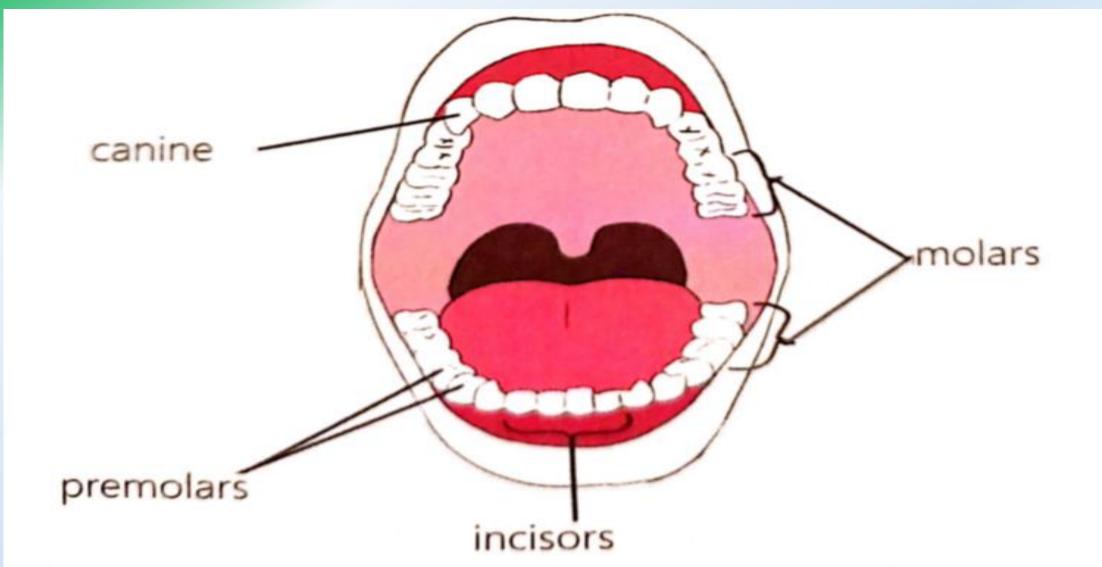
(f). Besides temperature and pH state four other factors that affect enzyme activity. (04 marks)

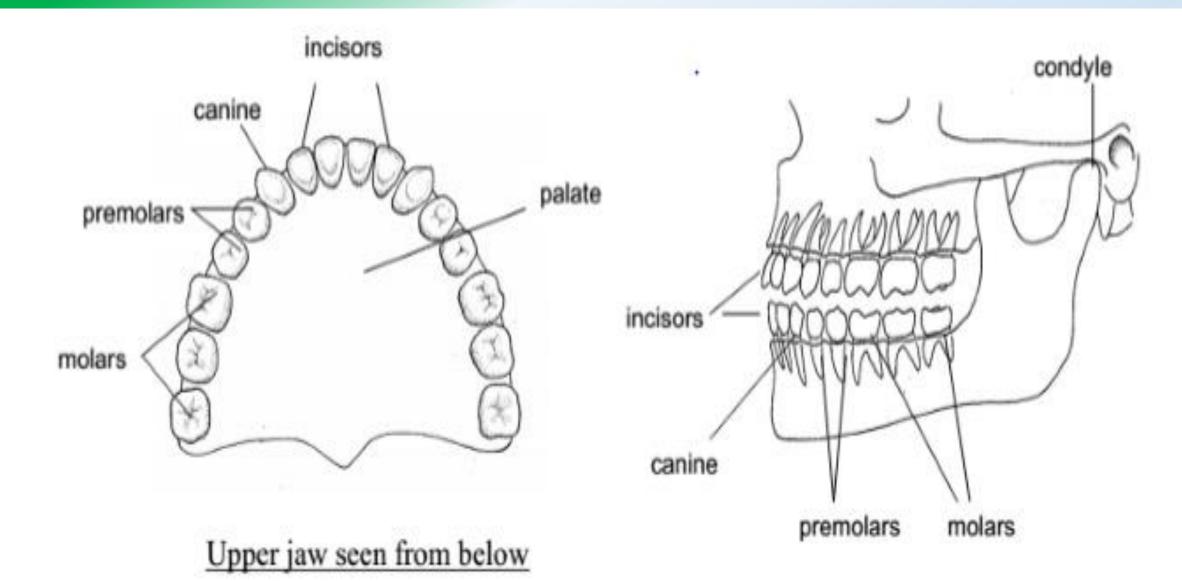
Using your knowledge about enzymes, complete the crossword

puzzle below.


Across

Down.


- **4.** What substance is made by living beings and acts as a catalyst to bring about a biochemical reaction?
- **6.** What is the name given to the process of destroying the properties of molecules by heat or acidity?
- **7.**What digestive enzyme breaks down proteins into peptides?
- **8.** What describes the intensity of heat in the atmosphere of a substance?
- **10.** What is the place where an enzyme and a substrate molecule react?
- **11.** What is the perfect temperature and pH for enzyme called?
- **12.** What name is given to the acidity or alkalinity of a solution?


- **1.** What term is used when substrate molecules interact with the active site of an enzyme?
- **2.** What is the name of the enzyme in the pancreas that digests fat?
- **3.** What is the enzyme in your mouth called?
- **5.** What term is used to describe the substance which an enzyme acts on?
- **9.** What term is used to describe the process of breaking down food?

8/4/2023

The Mammalian Teeth

Position of teeth in jaws - side view

Mammals have teeth embedded in the upper and lower jaws. The teeth and their jaws get adapted in different mammals for catching and chewing different kinds of food.

Mammals have different types of teeth modified to perform different functions depending on the diet.

Activity: identifying the different types of teeth and their roles

- a) Wash your hands, open your mouth and with the help of a plane mirror, use your index finger to feel the shape of your teeth
- b) How many kind of teeth can you find? Identify the different types of teeth in your upper and lower jaws.
- c) State the location of each type of tooth
- d) Identify which teeth are used for piercing and tearing and which teeth are used for biting and cutting. Also find out the teeth used for chewing and grinding.

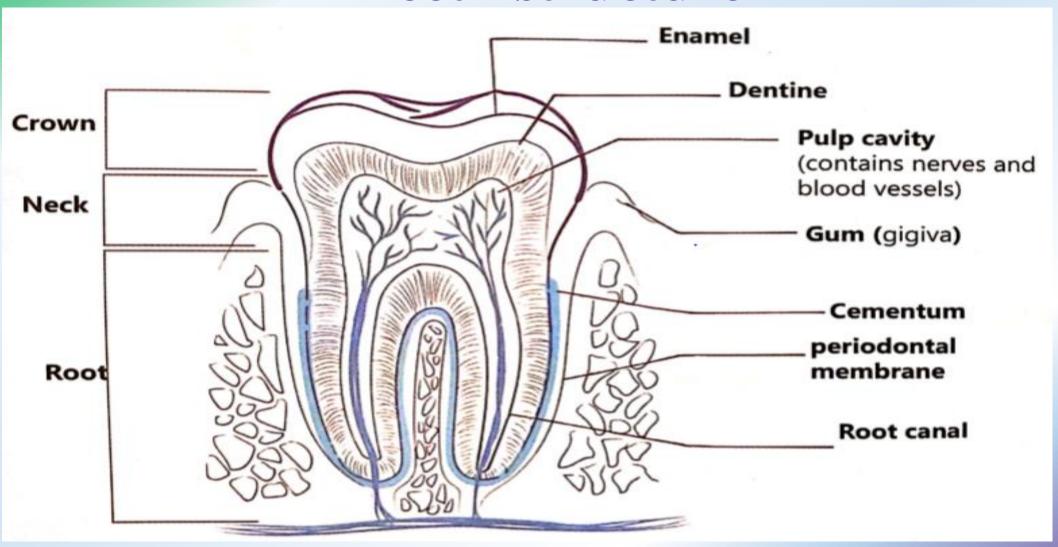
Record your observations in the table below;

Table of results

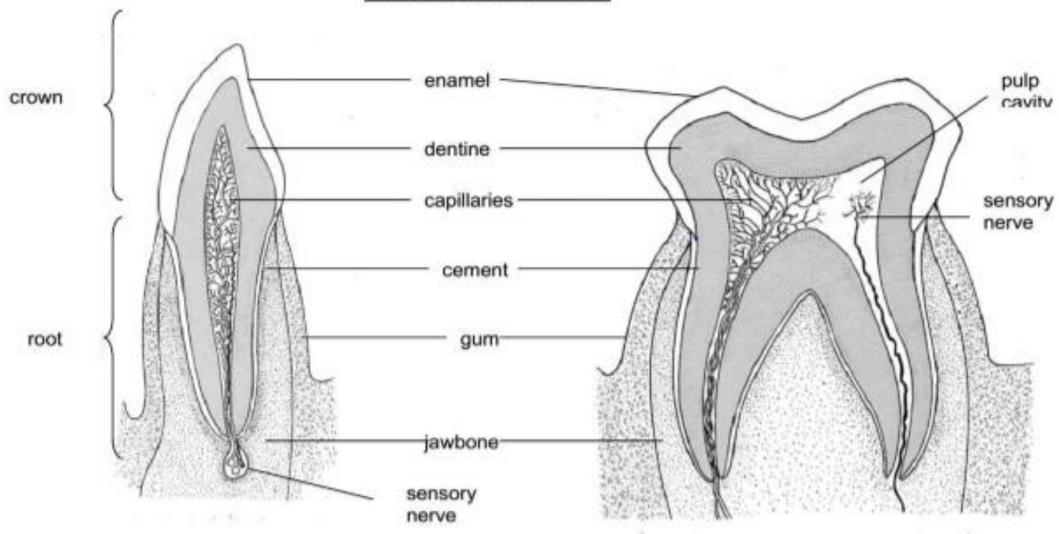
Function	Number of teeth		Type of teeth
	Lower jaw	Upper jaw	
Piercing and tearing			
Cutting and biting			
Chewing and grinding 8/4/2023	@DETED I OVION 77	8001502/ 758795415	172

Table of results

Function	Number	Type of teeth	
	Lower jaw	Upper jaw	
Piercing and tearing	2	2	Canine
Cutting and biting	4	4	Incisor
Chewing and grinding	10	10	Molars and premolars


Quiz

Why are teeth performing the same role positioned together in the same region in the mouth?


Soln

To provide a large surface area which increases their efficiency in pertaining their function

Teeth structure

Tooth structure

Vertical section through incisor

Vertical section through molar

Description

The tooth is divided into sections

i) Crown: this is the portion that is visible above the gum level. It is usually white in colour and its used to bite.

The surface of the crown is covered by a very hard layer called **ENAMEL**. Below the enamel is the softer **Dentine** and inside the dentine is an open space called the **Pulp cavity** which contains **nerves** and **blood capillaries**.

- i) Neck: the part surrounded by the gum
- ii) Root: portion within the bony socket of the jaw.

Exercise

Using reference books or internet:

- 1. Find out the functions of the parts labeled in the drawing made.
- 2. Explain what would happen if your tooth lost;
- i) The enamel
- ii) cement

Soln

- 1. i) **crown:** for breaking down food
- ii) neck: forms a junction between the crown and root
- iii) root: fixes the tooth into the jaw bone
- iv) enamel: provides strength to the tooth
- v) dentine: protects teeth from heat and cold
- vi) **Pulp cavity:** contains nerves that provide sensitivity to the tooth and blood vessels that transport food and oxygen to the teeth
- vii) gum: resists friction or food passing over the teeth.
- viii) cement: covers roots of the teeth.

ctd

- 2 i) exposes the dentine and nerves, making the tooth more sensitive to heat and cold
- ii) The tooth becomes loose in the jaw bone and is eventually lost

NB: mammalian teeth are classified based on the number of roots and the number of ridges on the surface of the enamel in a crown.

Drawing of the structures of different types of teeth and their adaptation

• Visit the library and make drawings of the 4 types of teeth in man.

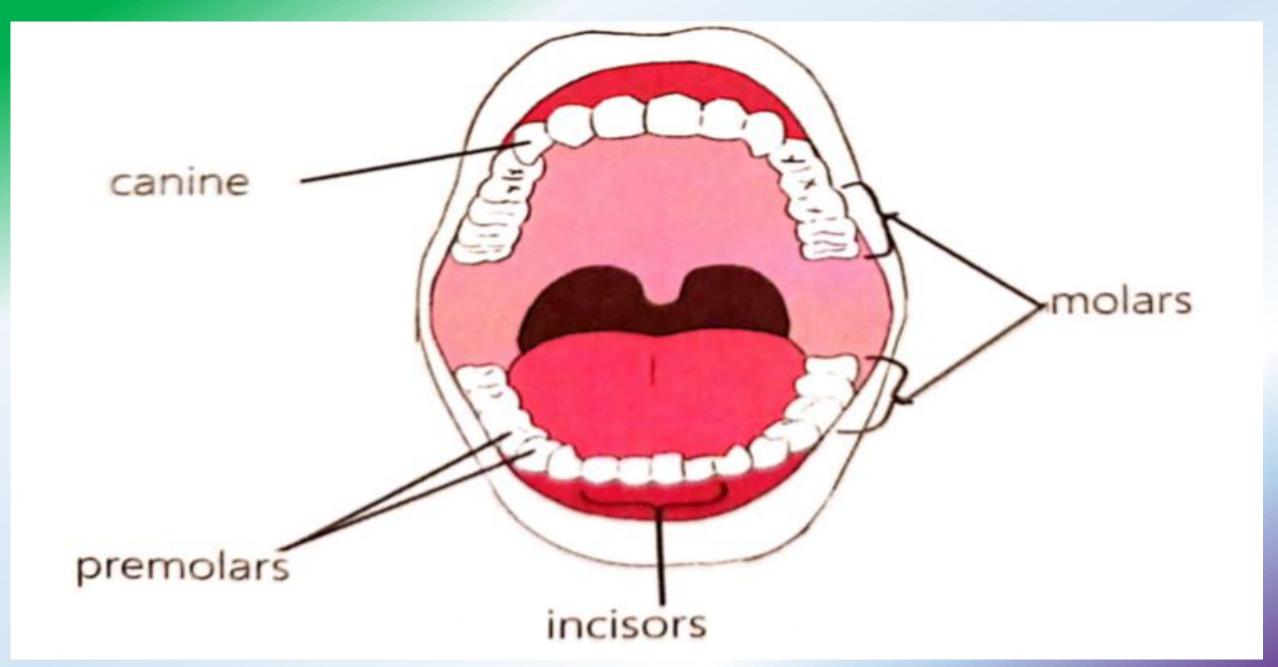
Adaptations

Type of teeth	Adaptation	Function
Incisor	Sharp and pointed crown for tearing flesh	Biting
Canine	Wedge-shaped crown for cutting food	Piercing and tearing
Premolar	Two roots for firm anchorage into the jaw bone Cusps and ridges shaped for chewing food Flat broad surfaces for grinding food	Chewing and grinding
Molar	Three roots for firm anchorage into the jaw bone Wider crowns with more cusps and ridges for chewing @PETER OKION 778001502/758795415	Chewing and grinding
8/4/2023	@PETER L OKION 778001502/ 758795415	183

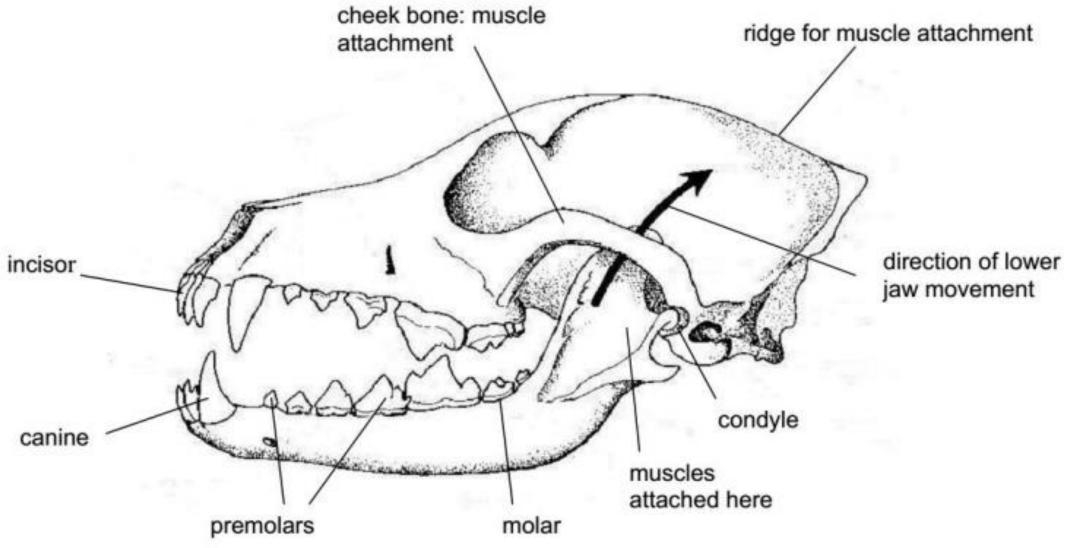
Quiz

- 1. Why do teeth have different number of roots?
- 2. Which type of teeth do you use to eat meat and why?

soln


- 1. The teeth perform different functions and therefore require different forms of anchorage into the jaw bone
- 2. Premolars and molars have a crown with a wider surface having cusps and ridges which increase surface area for chewing food.

Dentition and dental formula in mammals


Dentition: is the number of teeth, their shape and arrangement in an animal.

Dental formula: is one obtained by counting the number of each type of teeth in one half of the upper and one half of the lower jaw.

NB: mammals e.g. humans develop 2 sets of teeth during their life time, milk teeth in the early stages of life and the permanent teeth which replace milk teeth later in life.

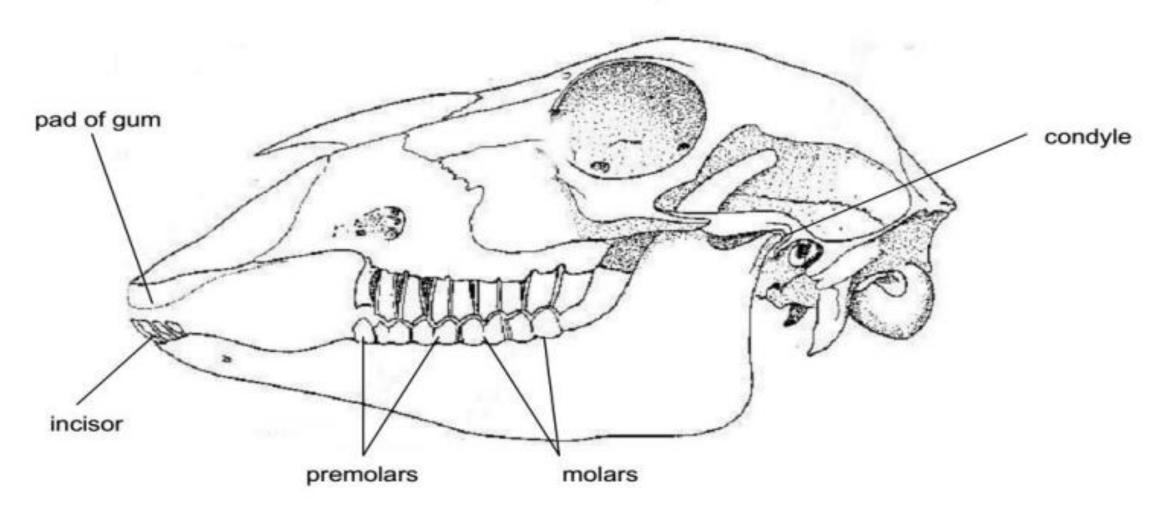


Diagram showing dentition in the carnivore e.g. a dog

8/4/2023

Dentition of a sheep

Activity

- In groups, illustrate the dental formula of the following animals
 a) cow or goat
 b) dog or cat
 c) human
- 2. Which teeth form carnassial teeth in cats and dogs? Why do such animals have carnassial teeth?
- 3. Explain the absence of canines and incisors in the upper jaws of goats and cows

Dental formulae of some animals

Mammal	Dental formulae	Total number of teeth
Man		32
Dog	$1\frac{3}{3}$; $C\frac{1}{1}$; PM $\frac{4}{4}$, M $\frac{2}{3}$	42
Rat	$1\frac{1}{1}$; $C\frac{0}{0}$; PM $\frac{0}{0}$, M $\frac{3}{3}$	16
Cow	$1\frac{0}{3}$; $C\frac{0}{1}$; PM $\frac{3}{3}$, M $\frac{3}{3}$	32

Soln

1.	a) I 0/3 C 0/1 Pm 3/3 M 3/3	COW
	b) I 3/3 C 1/1 Pm 4/4 M 2/3	DOG
	c) I 2/2 C 1/1 Pm 2/2 M 3/3	MAN

- 2. Premolars and first molars. They act like a pair of scissors which slice through meat cutting it into smaller pieces for swallowing.
- 3. Goats and cows have a hard-horny pad for holding and plucking grass during feeding so they do not need canines and incisors

Oral hygiene

Do you like sweets? Are you aware that when sugars remain on teeth for long, they cause teeth **decay**?

People having yellowish marks near the gums have **Plague**. Usually formed when some **bacteria** in the mouth combine with substances from saliva. The plague cause **Gum disease** if not removed immediately. Plague can also be got if one uses water with excess amount of **fluoride**.

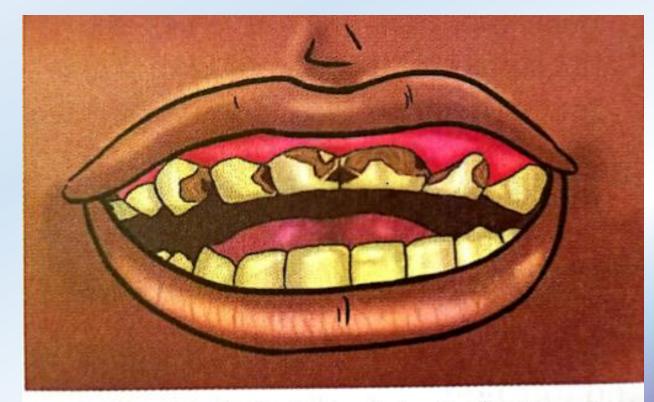
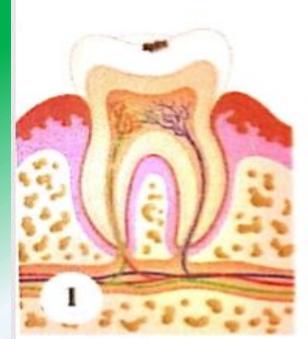


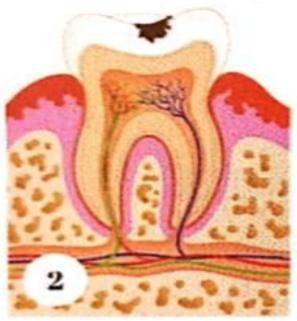

Figure 5.3: Deformed teeth due to poor dental care

healthy gum

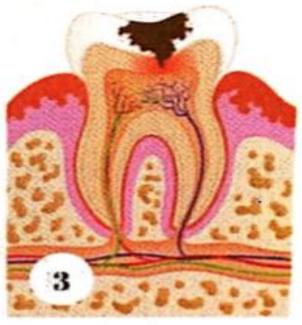
A plaque builds up around the edges of the teeth and gums

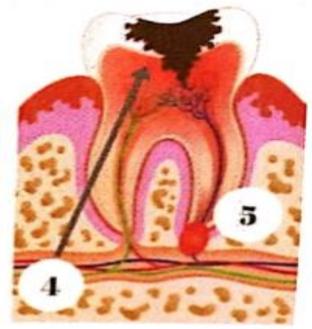


If the plaque is not removed, it hardens to form tartar encouraging bacteria to attack periodontal membrane



When the periodontal membrane is destroyed further, tooth is loosened and may fall out


Figure 5.4(a): Process of development of gum disease


Sugary food trapped in depressions on the surface of the tooth; bacteria feed on food and form acids, which attack the enamel

Decay eats into the enamel; causing slight toothache

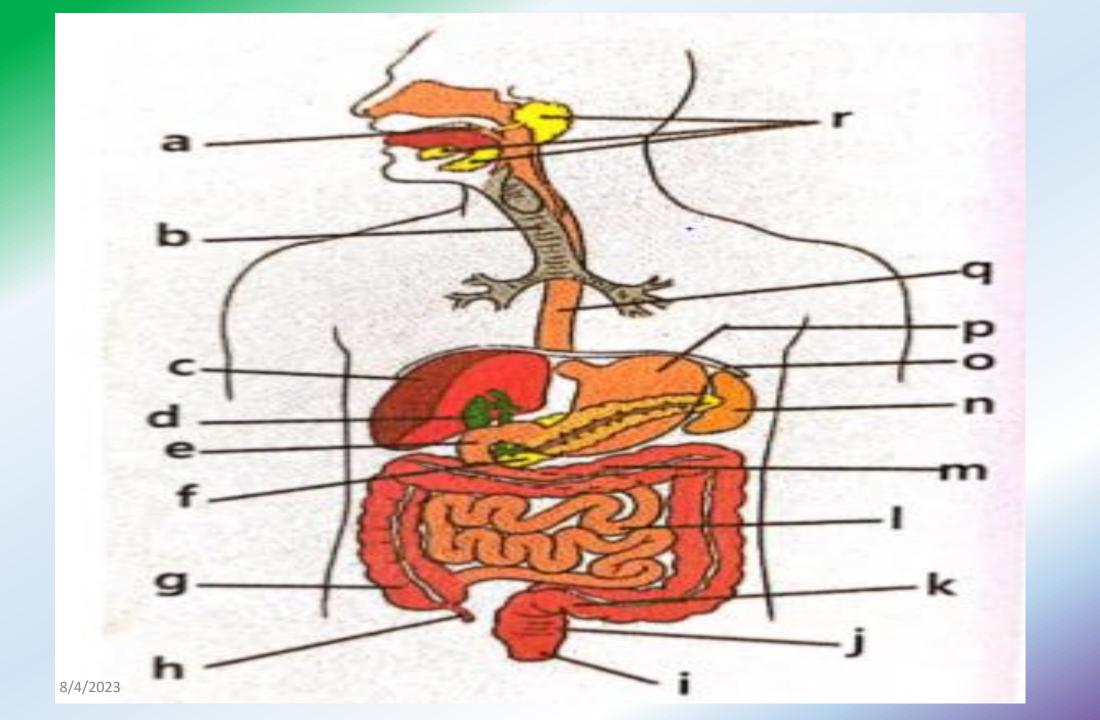
Decay and bacterial infection reach the pulp; causing severe toothache

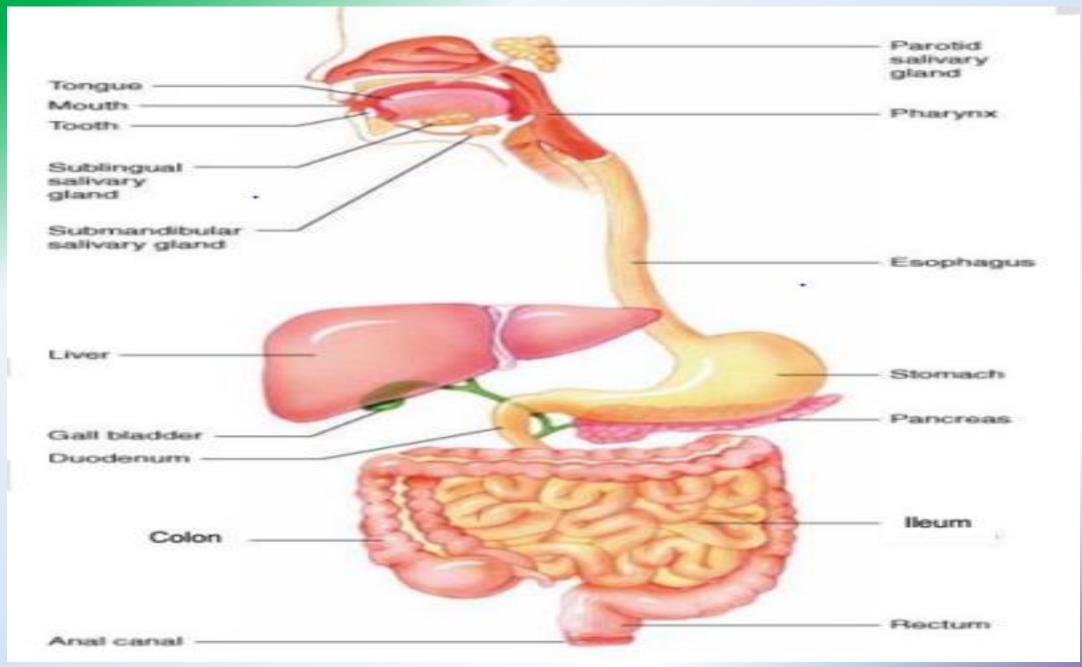
Bacteria infect the base of the tooth forming an abscess; agony

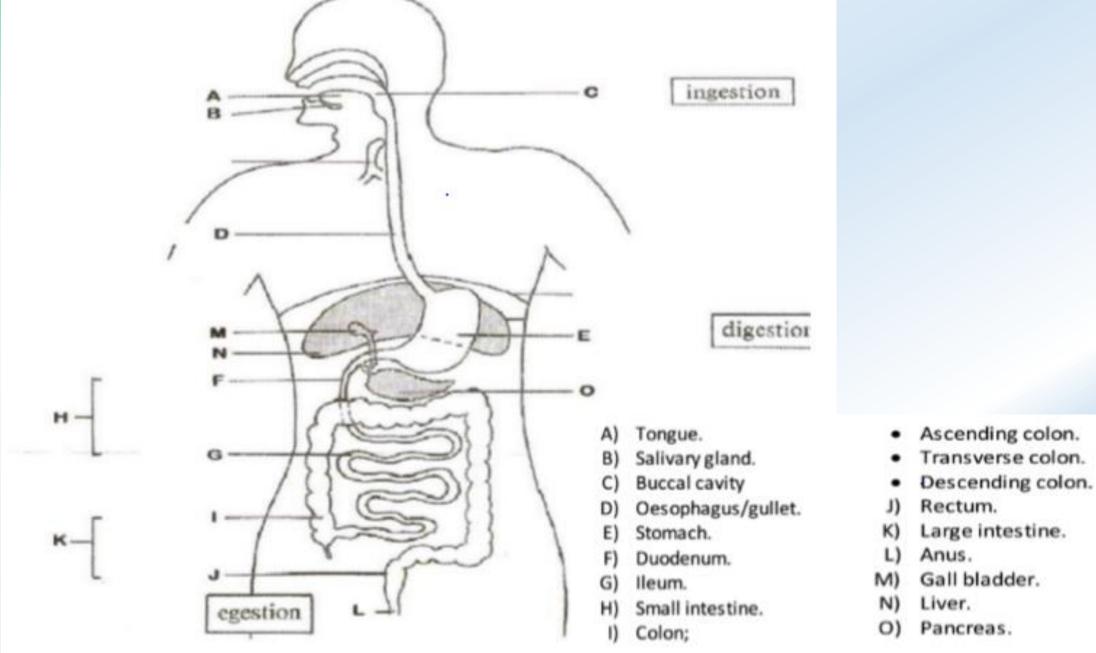
Figure 5.4(b): How tooth decay happens

Activity

- In your groups, discuss the following
- 1. Why you should practice dental hygiene?
- 2. How dental hygiene is maintained in your community
- 3. Consequences of poor dental hygiene
- 4. How can constant eating of sweats be dangerous to your oral health?
- 5. Why is it important to avoid using toothbrushes for a very long period of time without changing it?

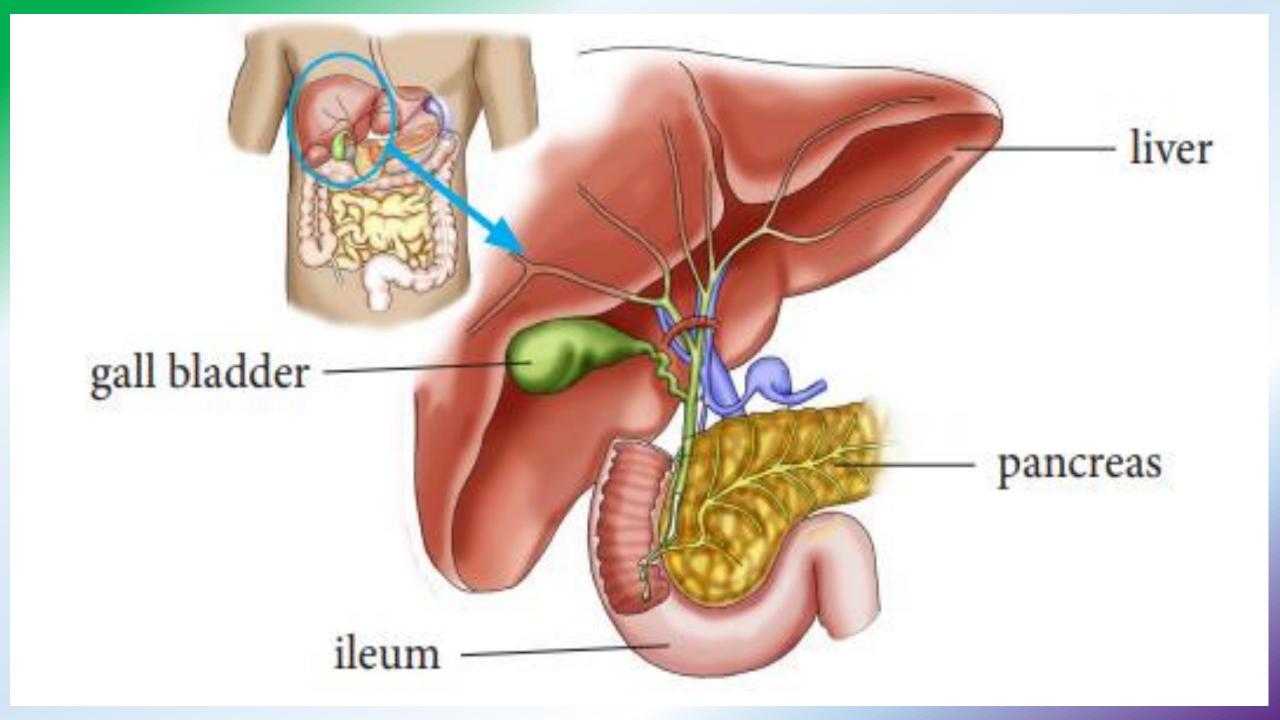

Ctd


3. Consequences of poor dental hygiene


- Periodontal diseases e.g. gingivitis, bleeding gums
- Tooth loss when extracted by the dentist upon being diseased
- **❖**Tooth decay
- ❖Tooth abscesses; painful and swollen gums which can lead to brain abscesses if not treated early

- 4. The sugar in sweets combines with saliva and bacteria in the mouth leading to formation of plague on teeth, if not removed, teeth plague can dissolve the enamel leading to cavities
- **5.** A new tooth brush removes more plague than one that is worn out .
- OAs bristles become worn, they become prone to bacterial or fungal growth
- Very old toothbrushes with worn out bristle can cause gum bleeding
- OUsing a toothbrush for more than 3 months might cause you dental problems and bad breath.

ALIWENTARY

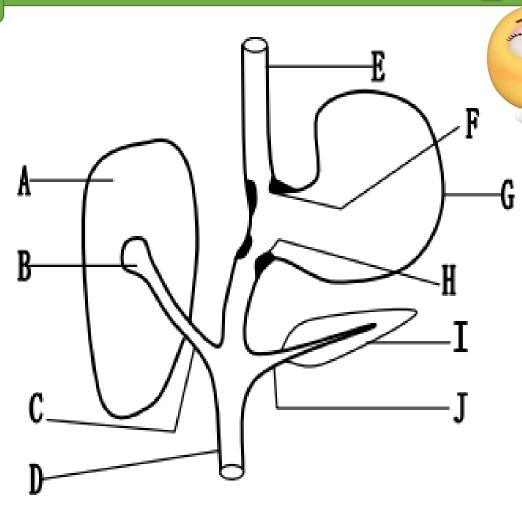


Parts of the alimentary canal

a- mouth cavity secretes saliva for digestion of starch, **b-** trachea, **c**liver produces bile, **d**- gall bladder secretes bile for emulsification of fats, e- duodenum for digestion of fats, proteins and starch, f- pancreas secretes pancreatic juice, g- caecum, h- appendix, i- anus allows exit of undigested food materials(egestion), i- rectum for temporary storage of undigested food, **k**-colon, **l**-small intestines for final digestion of food, **m**- large intestines for absorption of water from food, **n**- spleen, **0-** diaphragm, **p-** stomach for temporary storage of food, **q**oesophagus for passage of food to the stomach, **r**- salivary glands secrete amylase enzyme

Quiz

- 1. Why is the alimentary canal tubular?
- 2. Why do the liver and pancreas appear in close association with the duodenum?
- 3. Explain why the ileum is coiled.


NB: the length of the alimentary canal varies depending on the type of diet the animal depends on.

It is longest in herbivores and shortest in carnivores.

Soln

- 1. To allow passage of food.
- 2. The liver produces bile while the pancreas produces digestive enzymes that catalyze the digestion of food in the duodenum.
- 3. To allow down movement of food giving it more time for efficient absorption of the end products of digestion.

Sample question

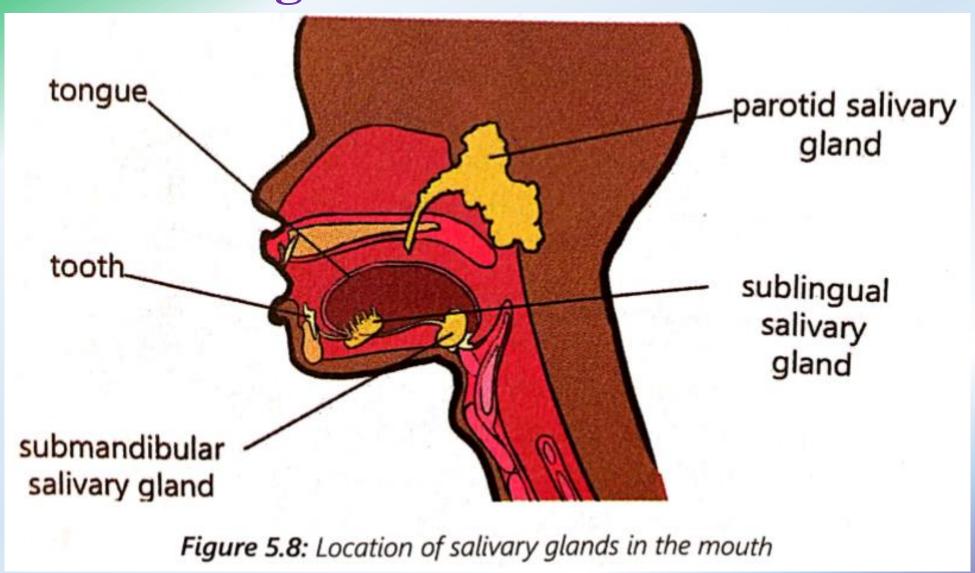
The figure below shows part of the human alimentary canal and associated organs.

- (a) Name the parts labelled A I (04 marks)
- (b) State the importance of the following parts A, C and I in the process of digestion. (03 marks)
- (c) State the enzymes produced by part G and state their respective functions. (03 marks)

Digestion of food

Digestion is the breakdown of large or complex food materials into smaller sized soluble materials that can be absorbed into the blood stream.

Physical digestion: This is the breakdown of food due to the mechanical action of teeth, muscular contractions and bile juice.


Chemical digestion: This is the breakdown of food due to enzyme action or enzymatic action.

The food components gradually get digested as food travels through the various components of the alimentary canal.

The inner walls of the stomach, the small intestines and the various glands associated with the canal e.g. salivary glands, the liver and the pancreas secrete digestive juices.

The digestive juices contain **enzymes** that convert **complex** substances of the food into **simpler** ones.

Digestion in the mouth

Ctd

Food is taken into the body through the mouth by the process called ingestion.

When food is in the mouth, it is chewed with the teeth and broken down mechanically into small pieces while the tongue mixes food with saliva and rolls it into the bolus for easy swallowing.

The mouth has salivary glands which secrete saliva

Chemical digestion is carried out by the enzyme salivary amylase Saliva is an alkaline watery solution and it provides the optimal PH for the action of amylase i.e. a high PH. Salivary amylase acts only on cooked starch breaking it down to disaccharide called **Maltose**.

Cooked starch

Salivary amylase (Ptyalin)

Maltose.

DIGESTION IN THE STOMACH

Digestion in stomach is mainly chemical.

In the stomach, there is only **protein digestion**.

Gastric juice is secreted and it contains two enzymes, (pepsin and renin), hydrochloric acid, mucus and water.

Pepsin acts upon **proteins** breaking them down into **polypeptides**.

Pepsin works at **low pH** i.e. **acidic** conditions provided by the presence of Hydrochloric acid (HCl).

Renin coagulates **milk**. (Makes it insoluble) i.e. it converts the **soluble** milk protein **Caseinogen** to an **insoluble** curd, **casein** which is then acted upon by **pepsin** breaking it down to polypeptide.

Rennin is an important enzyme especially in young mammals since they feed on only milk.

Caseinogen (Soluble protein)

Renin

Casein (Insoluble protein)

Proteins (Soluble protein) pepsin

polypeptides

Physical digestion in stomach is due **peristaltic** movements of thick stomach wall against food. The peristaltic movements mix food with gastric juice to form acidic chyme

Importance of: i) HCl

- ✓ Activates pepsinogen to enzyme pepsin
- ✓ Creates adequate pH medium for action of pepsin
- ✓ Kills microorganisms that escape into stomach
- ✓ Stops action of ptyalin (salivary amylase)
- ii) Mucus: Mucus forms a barrier between stomach walls and Gastric juice thus protecting the stomach walls from the action of hydrochloric acid

DIGESTION IN THE DUODENUM

There are accessory organs which release digestive juices into duodenum; pancreas releasing pancreatic juice and gall bladder releasing bile

Functions of bile

- i) It's alkaline and neutralizes the HCl in chyme to stop the action of the stomach enzymes and allow enzymes in the pancreatic juice to begin working.
- ii) It reduces the surface tension of fats and breaks them into minute droplets i.e. emulsifies fat.
- iii) Provides suitable pH for action of pancreatic enzymes

The arrival of food in the duodenum stimulates the production of a hormone called **secretin** to the pancreas and stimulates secretion of **pancreatic juice**. It contains a number of enzymes which are called the **pancreatic enzymes** as shown in the table below.

Enzymes	Food acted upon	Products
Trypsin	Proteins/ polypeptides	Peptides
Pancreatic amylase	Starch	Maltose
Pancreatic lipase	Lipids	Fatty acids and glycerol

DIGESTION IN THE ILEUM

This is where final digestion takes place.

Food moves down from the duodenum into the ileum by peristalsis. The presence of food in the ileum stimulates the secretion of the **intestinal juice**, **Succus entericus** by walls of the **ileum**.

Succus entericus contains several enzymes which complete the process of digestion forming a milky fluid substance called **chyle**(food after final digestion is called chyle).

Enzymes	Food acted upon	Products
Sucrase	Sucrose	Glucose and fructose
Maltase	Maltose	Glucose and glucose
Lactase	Lactose	Glucose and galactose
Peptidase	Polypeptides	Amino acids
Lipase	Lipids	Fatty acids and glycerol
8/4/2023	@PETER L OKION 778001502/ 758795415	

Question 1: Describe the digestion process that occurs when a person consumes Posho (starch)?

A piece of Posho is placed into the mouth, a process called ingestion.

In the mouth; The Posho is thoroughly chewed by teeth, breaking it into smaller particles. During this chewing, Posho is mixed with saliva to make it soft and easy to swallow.

Saliva contains salivary amylase which breaks down cooked starch in Posho into maltose under neutral conditions.

Food is then pushed down the Oesophagus by a process called peristalsis.

In the stomach; no digestion of starch occurs because of acidic conditions due to presence of hydrochloric acid which provide un favourable pH for activity of salivary amylase.

In the duodenum; the pancreatic juice contains pancreatic amylase which speeds up the breakdown of undigested cooked starch to maltose.

In the ileum, intestinal juice contains maltase which speed up the breakdown of maltose to glucose molecules which are soluble hence easily absorbed by the body.

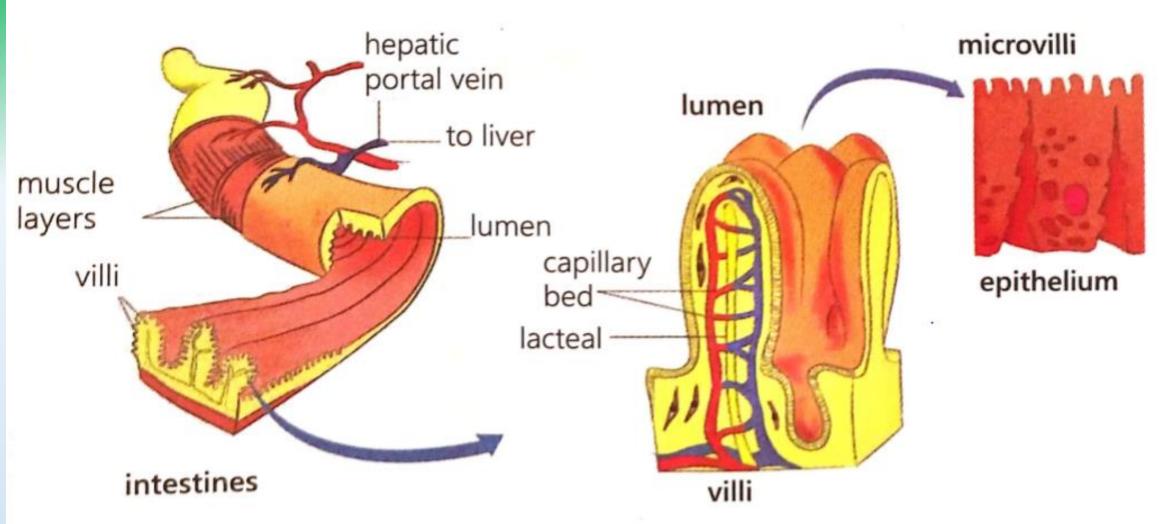
This marks the end of the digestion for Posho.

Question 2: Describe the process of digestion of proteins in man.

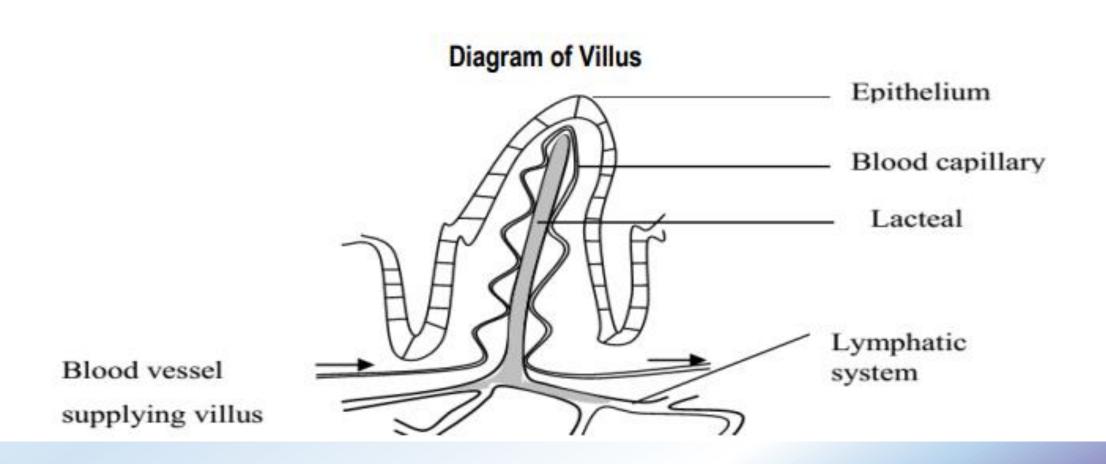
In the mouth; Protein food is chewed by the teeth and swallowed into the stomach.

In the stomach; gastric juice is produced which contain pepsin that digests proteins to peptides and rennin coagulates protein milk in babies.

In the duodenum; presence of food stimulates pancreas to secrete pancreatic juice containing trypsin which digests undigested proteins to peptides.


In the ileum; intestinal juice is produced containing peptidase which break down peptides to amino acids which are later absorbed through the ileum walls.

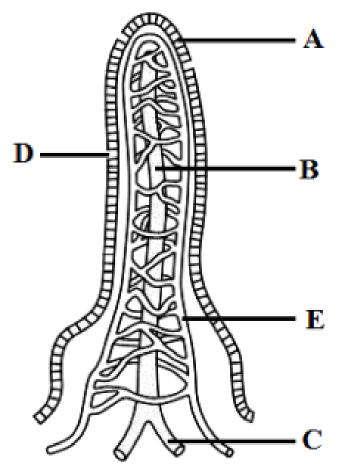
ABSORPTION


Absorption is the process by which soluble products of digestion diffuse through the cellular lining of the villi into the blood stream.

The food that remains undigested and unabsorbed enters into large intestines forming faeces which are temporarily stored in the rectum and later expelled through a process called **egestion**.

THE VILLI

Diagram of Villus epithelium blood capillary lacteal mucussecreting cell blood vessel supplying villus lymphatic = system



Adaptations of ileum for absorption

- ✓ Long to increase surface area over which absorption can take place
- ✓ Is coiled to reduce distance of movement of food substances, increasing time for absorption
- ✓ Has villi, which are finger like projections that increase surface area for absorption of nutrients
- ✓ The villi also have hair like extensions called the micro villi which further increase the surface area for absorption of soluble food products.
- ✓ Supplied with adequate blood by numerous blood capillaries which transport away absorbed nutrients.
- ✓ Lacteals into which fatty acids and glycerol is absorbed
- ✓ Thin wall to reduce diffusion distance for absorption of food nutrients.

Sample question

The figure below shows a structure found in part of the alimentary canal.

- (a) Name the structure shown in the figure, and state the part of the alimentary canal in which it is found (01 marks)
- (b) Name the parts labeled A, B, C and D. (02 marks)
- (c) What food substances enter parts B and E? (02 marks)
- (d) Name the blood vessel that connects this structure to the liver. (01 marks)
- (e) Explain the ways in which this structure is adapted to enable it to carry out its function. (03 marks)

ASSIMILATION

This is the process by which absorbed food materials are used to form complex components of cells of organism as well as incorporation in tissues of an organism.

THE FATE OF ABSORBED FOOD NUTRIENTS IN THE BODY

Glucose

Proteins

Lipids (Fatty acids & Glycerol)

- ✓ Glucose is mainly broken down in the process of **respiration** to provide **energy** for the body's metabolic process.
- ✓ Excess glucose is stored as

 Glycogen (animal starch);
 however, the liver has the ability
 to reconvert back the glycogen to
 Glucose in periods of starvation.
- ✓ Amino acids are used in the synthesis of **enzymes** e.g. pepsin.
- ✓ Amino acids are used in the synthesis of **hormones** e.g. insulin.
- ✓ Amino acids are used in the synthesis of **antibodies**.
- ✓ Some Amino acids are used in body growth and repair.
- ✓ Amino acids can instead be used in the process of respiration to produce **energy** during starvation.
- ✓ Excess Amino acids are deaminated by the liver to form urea and carbohydrate residue.

NB: Deamination is the removal of the amino group from Amino acids to form urea (which is a toxic waste product).

- ✓ Fatty acids and glycerol in the absence of Glucose can be oxidized to release **energy**. Fats produce much more energy compared to glucose considering the same amount by mass.
- ✓ Fats may be stored in adipose tissue. The fat tissue formed insulates the body against heat loss and also protects vital body organs like the liver and intestines from mechanical damage.
- ✓ Lipids are used in the formation of structures like the **cell membrane**.

TEST YOURSELF

- 1. What is an enzyme?
- 2. Complete the table below which illustrates the digestive process.

Region of digestion	Active enzyme	Substrate	Product (s)
Mouth	Amylase	••••••	••••••
Stomach	•••••	Proteins	•••••
Duodenum	••••••	Polypeptides	•••••
••••••	••••••	Fats	•••••

Ctd

- 3. A patient suffering from gall bladder disease has had his gall bladder removed. Suggest and explain the type of diet and lifestyle that he should adopt.
- 4. A certain disease of the alimentary canal destroys the villi in the small intestine. Explain how this would affect the digestion and absorption of food.
- 5. What are the benefits of brushing your teeth regularly?
- 6. How does the structure of each of the following teeth suit its function?
- i) Canine

ii) Incisor

iii) Molar

BIOLOGY IS LIFE SLIDES PREPARED BY TR. OKION L PETER